{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "view-in-github"
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Em7RlIuuzk8Q"
},
"source": [
"# SQL: Queries to Create Triangles"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gzKPDBVF72a8"
},
"source": [
"This notebook was created by Jacky Poon for the [Actuaries' Analytical Cookbook](https://actuariesinstitute.github.io/cookbook/docs/index.html).\n",
"\n",
"## Introduction and Setup\n",
"\n",
"This article describes a method with SQL to convert a transactional claims dataset to a triangle. With the source data often being in a data warehouse, by running queries in SQL we can efficiently extract a small summary set, rather than attempting to transfer what may be a large dataset of raw transactional data to our machine running Python or R. For this example, we will use Python for constructing our dummy dataset, and use ``duckdb`` as our SQL database, but basic concepts should apply similarly to other SQL databases.\n",
"\n",
"There is also a dual purpose for this article to serve as an introduction to ``duckdb``, a handy package that for running analytical SQL queries locally without having to use a data warehouse server. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "N1avYHra4_NZ",
"outputId": "338198cf-2dbb-4d91-c09a-f568a7bbc3a8"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
"Collecting duckdb\n",
" Downloading duckdb-0.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.7 MB)\n",
"\u001b[K |████████████████████████████████| 15.7 MB 7.1 MB/s \n",
"\u001b[?25hRequirement already satisfied: numpy>=1.14 in /usr/local/lib/python3.7/dist-packages (from duckdb) (1.21.6)\n",
"Installing collected packages: duckdb\n",
"Successfully installed duckdb-0.4.0\n",
"Name: duckdb\n",
"Version: 0.4.0\n",
"Summary: DuckDB embedded database\n",
"Home-page: https://www.duckdb.org\n",
"Author: None\n",
"Author-email: None\n",
"License: MIT\n",
"Location: /usr/local/lib/python3.7/dist-packages\n",
"Requires: numpy\n",
"Required-by: \n"
]
}
],
"source": [
"!pip install duckdb\n",
"!pip show duckdb"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7OtHEPCn-AXr"
},
"source": [
"Import the libraries:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "lLHnqIAg8HZl"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"import duckdb\n",
"\n",
"from matplotlib import pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "OzMLKAFC49Wt"
},
"outputs": [],
"source": [
"# start an in-memory database\n",
"con = duckdb.connect(database=':memory:')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NyR--K6WBKWc"
},
"source": [
"## Transaction Data"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Z0_2mQZF8QTZ"
},
"source": [
"For the example reserving data, we use a simulated dataset from the [SynthETIC](https://arxiv.org/pdf/2008.05693.pdf) R package, with further adjustments to it to make it resemble a real dataset.\n",
"\n",
"DuckDB can [read and query CSVs directly from local files](https://duckdb.org/docs/data/csv) - but with CSV files from the internet it is easier to read it with Python in pandas."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 488
},
"id": "Yeb7wG-A8LbE",
"outputId": "630be246-7d80-463b-846b-750a25fd26be"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
claim_no
\n",
"
pmt_no
\n",
"
occurrence_period
\n",
"
occurrence_time
\n",
"
claim_size
\n",
"
notidel
\n",
"
setldel
\n",
"
payment_time
\n",
"
payment_period
\n",
"
payment_size
\n",
"
payment_inflated
\n",
"
payment_delay
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
0.623835
\n",
"
785870.789628
\n",
"
0.065163
\n",
"
18.228022
\n",
"
4.197594
\n",
"
5
\n",
"
25104.778182
\n",
"
25631.935128
\n",
"
3.508595
\n",
"
\n",
"
\n",
"
1
\n",
"
1
\n",
"
2
\n",
"
1
\n",
"
0.623835
\n",
"
785870.789628
\n",
"
0.065163
\n",
"
18.228022
\n",
"
7.096012
\n",
"
8
\n",
"
26176.620067
\n",
"
27112.545886
\n",
"
2.898418
\n",
"
\n",
"
\n",
"
2
\n",
"
1
\n",
"
3
\n",
"
1
\n",
"
0.623835
\n",
"
785870.789628
\n",
"
0.065163
\n",
"
18.228022
\n",
"
11.157697
\n",
"
12
\n",
"
26333.186750
\n",
"
27828.701791
\n",
"
4.061685
\n",
"
\n",
"
\n",
"
3
\n",
"
1
\n",
"
4
\n",
"
1
\n",
"
0.623835
\n",
"
785870.789628
\n",
"
0.065163
\n",
"
18.228022
\n",
"
14.445762
\n",
"
15
\n",
"
26341.097381
\n",
"
28293.903794
\n",
"
3.288065
\n",
"
\n",
"
\n",
"
4
\n",
"
1
\n",
"
5
\n",
"
1
\n",
"
0.623835
\n",
"
785870.789628
\n",
"
0.065163
\n",
"
18.228022
\n",
"
18.452453
\n",
"
19
\n",
"
592456.913866
\n",
"
649127.994604
\n",
"
4.006691
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
18978
\n",
"
3624
\n",
"
2
\n",
"
40
\n",
"
39.767468
\n",
"
270737.291484
\n",
"
0.666458
\n",
"
2.920804
\n",
"
41.622132
\n",
"
42
\n",
"
6586.081338
\n",
"
8093.128975
\n",
"
0.670541
\n",
"
\n",
"
\n",
"
18979
\n",
"
3624
\n",
"
3
\n",
"
40
\n",
"
39.767468
\n",
"
270737.291484
\n",
"
0.666458
\n",
"
2.920804
\n",
"
42.081820
\n",
"
43
\n",
"
9716.975065
\n",
"
11967.648057
\n",
"
0.459688
\n",
"
\n",
"
\n",
"
18980
\n",
"
3624
\n",
"
4
\n",
"
40
\n",
"
39.767468
\n",
"
270737.291484
\n",
"
0.666458
\n",
"
2.920804
\n",
"
42.407479
\n",
"
43
\n",
"
7770.338755
\n",
"
9585.568042
\n",
"
0.325659
\n",
"
\n",
"
\n",
"
18981
\n",
"
3624
\n",
"
5
\n",
"
40
\n",
"
39.767468
\n",
"
270737.291484
\n",
"
0.666458
\n",
"
2.920804
\n",
"
43.066655
\n",
"
44
\n",
"
203618.760893
\n",
"
252007.199917
\n",
"
0.659176
\n",
"
\n",
"
\n",
"
18982
\n",
"
3624
\n",
"
6
\n",
"
40
\n",
"
39.767468
\n",
"
270737.291484
\n",
"
0.666458
\n",
"
2.920804
\n",
"
43.354731
\n",
"
44
\n",
"
34908.748394
\n",
"
43266.205665
\n",
"
0.288075
\n",
"
\n",
" \n",
"
\n",
"
18983 rows × 12 columns
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
],
"text/plain": [
" claim_no pmt_no occurrence_period occurrence_time claim_size \\\n",
"0 1 1 1 0.623835 785870.789628 \n",
"1 1 2 1 0.623835 785870.789628 \n",
"2 1 3 1 0.623835 785870.789628 \n",
"3 1 4 1 0.623835 785870.789628 \n",
"4 1 5 1 0.623835 785870.789628 \n",
"... ... ... ... ... ... \n",
"18978 3624 2 40 39.767468 270737.291484 \n",
"18979 3624 3 40 39.767468 270737.291484 \n",
"18980 3624 4 40 39.767468 270737.291484 \n",
"18981 3624 5 40 39.767468 270737.291484 \n",
"18982 3624 6 40 39.767468 270737.291484 \n",
"\n",
" notidel setldel payment_time payment_period payment_size \\\n",
"0 0.065163 18.228022 4.197594 5 25104.778182 \n",
"1 0.065163 18.228022 7.096012 8 26176.620067 \n",
"2 0.065163 18.228022 11.157697 12 26333.186750 \n",
"3 0.065163 18.228022 14.445762 15 26341.097381 \n",
"4 0.065163 18.228022 18.452453 19 592456.913866 \n",
"... ... ... ... ... ... \n",
"18978 0.666458 2.920804 41.622132 42 6586.081338 \n",
"18979 0.666458 2.920804 42.081820 43 9716.975065 \n",
"18980 0.666458 2.920804 42.407479 43 7770.338755 \n",
"18981 0.666458 2.920804 43.066655 44 203618.760893 \n",
"18982 0.666458 2.920804 43.354731 44 34908.748394 \n",
"\n",
" payment_inflated payment_delay \n",
"0 25631.935128 3.508595 \n",
"1 27112.545886 2.898418 \n",
"2 27828.701791 4.061685 \n",
"3 28293.903794 3.288065 \n",
"4 649127.994604 4.006691 \n",
"... ... ... \n",
"18978 8093.128975 0.670541 \n",
"18979 11967.648057 0.459688 \n",
"18980 9585.568042 0.325659 \n",
"18981 252007.199917 0.659176 \n",
"18982 43266.205665 0.288075 \n",
"\n",
"[18983 rows x 12 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"transactions = pd.read_csv(\n",
" \"https://raw.githubusercontent.com/JackyP/SyntheticExports/main/synthetic_test_transaction_dataset.csv\"\n",
")\n",
"transactions"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "71vnpC-249Ww"
},
"source": [
"This is a transactional dataset with payments. The dataset has times are represented as arbitrary time period units rather than dates, and some additional calculated fields are already available. However, for this exercise, we want to demonstrate how to create these columns in real world situations where the raw datasets are unlikely to include them. So the time periods will be converted to date formats with months from a start date of 2000-01-01 and some columns hidden to create a dataset that resembles real datasets in practice."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "tj0m-7du49Wx"
},
"outputs": [],
"source": [
"# Feel free to skim through this part.\n",
"import datetime\n",
"from dateutil.relativedelta import relativedelta\n",
"\n",
"dummy_start_date = datetime.date(2000, 1, 1)\n",
"\n",
"transactions['occurrence_date'] = transactions.apply(\n",
" lambda x: (dummy_start_date + \n",
" relativedelta(months = int(x['occurrence_time'])) + \n",
" relativedelta(days = int(x['occurrence_time'] % 1 * 28))\n",
" ), \n",
" axis = 1\n",
")\n",
"\n",
"transactions['payment_date'] = transactions.apply(\n",
" lambda x: (dummy_start_date + \n",
" relativedelta(months = int(x['payment_time'])) + \n",
" relativedelta(days = int(x['payment_time'] % 1 * 28))\n",
" ), \n",
" axis = 1\n",
")\n",
"transactions2 = transactions.loc[\n",
" lambda df: df.payment_time <= 40, \n",
" [\"claim_no\", \"pmt_no\", \"occurrence_date\", \"payment_date\", \"payment_size\"]\n",
"]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3UBTPx5K49Wy"
},
"source": [
"So we will register this pandas table in SQL and pretend we had a dataset in our data warehouse that looks like this:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 424
},
"id": "qCNzxYRE49Wy",
"outputId": "4abb29f4-9133-4657-abfb-d75a81a30165"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
claim_no
\n",
"
pmt_no
\n",
"
occurrence_date
\n",
"
payment_date
\n",
"
payment_size
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
2000-01-18
\n",
"
2000-05-06
\n",
"
25104.778182
\n",
"
\n",
"
\n",
"
1
\n",
"
1
\n",
"
2
\n",
"
2000-01-18
\n",
"
2000-08-03
\n",
"
26176.620067
\n",
"
\n",
"
\n",
"
2
\n",
"
1
\n",
"
3
\n",
"
2000-01-18
\n",
"
2000-12-05
\n",
"
26333.186750
\n",
"
\n",
"
\n",
"
3
\n",
"
1
\n",
"
4
\n",
"
2000-01-18
\n",
"
2001-03-13
\n",
"
26341.097381
\n",
"
\n",
"
\n",
"
4
\n",
"
1
\n",
"
5
\n",
"
2000-01-18
\n",
"
2001-07-13
\n",
"
592456.913866
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
18522
\n",
"
3540
\n",
"
1
\n",
"
2003-03-22
\n",
"
2003-04-15
\n",
"
7408.273603
\n",
"
\n",
"
\n",
"
18523
\n",
"
3540
\n",
"
2
\n",
"
2003-03-22
\n",
"
2003-04-23
\n",
"
7557.339854
\n",
"
\n",
"
\n",
"
18539
\n",
"
3543
\n",
"
1
\n",
"
2003-04-04
\n",
"
2003-04-25
\n",
"
11149.853130
\n",
"
\n",
"
\n",
"
18691
\n",
"
3570
\n",
"
1
\n",
"
2003-04-07
\n",
"
2003-04-26
\n",
"
3354.405206
\n",
"
\n",
"
\n",
"
18802
\n",
"
3588
\n",
"
1
\n",
"
2003-04-09
\n",
"
2003-04-26
\n",
"
2018.080359
\n",
"
\n",
" \n",
"
\n",
"
14951 rows × 5 columns
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
],
"text/plain": [
" claim_no pmt_no occurrence_date payment_date payment_size\n",
"0 1 1 2000-01-18 2000-05-06 25104.778182\n",
"1 1 2 2000-01-18 2000-08-03 26176.620067\n",
"2 1 3 2000-01-18 2000-12-05 26333.186750\n",
"3 1 4 2000-01-18 2001-03-13 26341.097381\n",
"4 1 5 2000-01-18 2001-07-13 592456.913866\n",
"... ... ... ... ... ...\n",
"18522 3540 1 2003-03-22 2003-04-15 7408.273603\n",
"18523 3540 2 2003-03-22 2003-04-23 7557.339854\n",
"18539 3543 1 2003-04-04 2003-04-25 11149.853130\n",
"18691 3570 1 2003-04-07 2003-04-26 3354.405206\n",
"18802 3588 1 2003-04-09 2003-04-26 2018.080359\n",
"\n",
"[14951 rows x 5 columns]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# register the table in sql\n",
"con.register('transactions_view', transactions2)\n",
"\n",
"transactions2"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Jym1qXXy49Wz"
},
"source": [
"### Using SQL\n",
"\n",
"Here is the SQL query. It creates accident, development and payment/calendar periods from the dataset, and sums up at that triangle level. Uncomment ``claim_no`` and ``pmt_no`` to get a more detailed view - or for testing that the logic works."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 424
},
"id": "szfYHWOd49Wz",
"outputId": "3091c20e-2a4f-429f-8686-8a97b23e0c83"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
occurrence_period
\n",
"
payment_period
\n",
"
development_period
\n",
"
payments
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1
\n",
"
2
\n",
"
2
\n",
"
46985.029619
\n",
"
\n",
"
\n",
"
1
\n",
"
1
\n",
"
3
\n",
"
3
\n",
"
392545.850638
\n",
"
\n",
"
\n",
"
2
\n",
"
1
\n",
"
4
\n",
"
4
\n",
"
185946.113394
\n",
"
\n",
"
\n",
"
3
\n",
"
1
\n",
"
5
\n",
"
5
\n",
"
700630.302735
\n",
"
\n",
"
\n",
"
4
\n",
"
1
\n",
"
6
\n",
"
6
\n",
"
261024.509136
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
765
\n",
"
37
\n",
"
40
\n",
"
4
\n",
"
338030.875016
\n",
"
\n",
"
\n",
"
766
\n",
"
38
\n",
"
39
\n",
"
2
\n",
"
97489.963585
\n",
"
\n",
"
\n",
"
767
\n",
"
38
\n",
"
40
\n",
"
3
\n",
"
259540.894156
\n",
"
\n",
"
\n",
"
768
\n",
"
39
\n",
"
40
\n",
"
2
\n",
"
69383.491649
\n",
"
\n",
"
\n",
"
769
\n",
"
40
\n",
"
40
\n",
"
1
\n",
"
16522.338695
\n",
"
\n",
" \n",
"
\n",
"
770 rows × 4 columns
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
],
"text/plain": [
" occurrence_period payment_period development_period payments\n",
"0 1 2 2 46985.029619\n",
"1 1 3 3 392545.850638\n",
"2 1 4 4 185946.113394\n",
"3 1 5 5 700630.302735\n",
"4 1 6 6 261024.509136\n",
".. ... ... ... ...\n",
"765 37 40 4 338030.875016\n",
"766 38 39 2 97489.963585\n",
"767 38 40 3 259540.894156\n",
"768 39 40 2 69383.491649\n",
"769 40 40 1 16522.338695\n",
"\n",
"[770 rows x 4 columns]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"con.execute(\"\"\"\n",
" CREATE OR REPLACE VIEW triangle AS \n",
" SELECT \n",
" --claim_no,\n",
" --pmt_no,\n",
" DATE_DIFF('month', DATE '2000-01-01', STRPTIME(occurrence_date, '%Y-%m-%d')) + 1 as occurrence_period,\n",
" DATE_DIFF('month', DATE '2000-01-01', STRPTIME(payment_date, '%Y-%m-%d')) + 1 as payment_period,\n",
" DATE_DIFF('month', DATE '2000-01-01', STRPTIME(payment_date, '%Y-%m-%d')) - \n",
" DATE_DIFF('month', DATE '2000-01-01', STRPTIME(occurrence_date, '%Y-%m-%d')) + 1 as development_period, \n",
" SUM(payment_size) as payments\n",
"\n",
" FROM \n",
" transactions_view\n",
" GROUP BY \n",
" --claim_no,\n",
" --pmt_no, \n",
" occurrence_period,\n",
" development_period,\n",
" payment_period\n",
" \n",
" ORDER BY\n",
" --claim_no,\n",
" --pmt_no, \n",
" occurrence_period,\n",
" development_period,\n",
" payment_period\n",
";\n",
" \n",
" SELECT * FROM triangle;\n",
"\"\"\"\n",
")\n",
"triangle = con.fetchdf()\n",
"triangle"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "YbTA47SG49W0"
},
"source": [
"Whilst the above is perfect for further calculations or export, triangles are often displayed in the \"wide\" format as follows. Pivotting is easier in pandas in Python (or R with ``dplyr::pivot_wider``), than in SQL."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "nlswukcw49W0",
"outputId": "f765f96b-e55a-48df-fafc-5d80e7c41114"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
development_period
\n",
"
1
\n",
"
2
\n",
"
3
\n",
"
4
\n",
"
5
\n",
"
6
\n",
"
7
\n",
"
8
\n",
"
9
\n",
"
10
\n",
"
...
\n",
"
30
\n",
"
31
\n",
"
32
\n",
"
33
\n",
"
34
\n",
"
35
\n",
"
36
\n",
"
37
\n",
"
38
\n",
"
39
\n",
"
\n",
"
\n",
"
occurrence_period
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
1
\n",
"
NaN
\n",
"
46985.029619
\n",
"
392545.850638
\n",
"
1.859461e+05
\n",
"
7.006303e+05
\n",
"
2.610245e+05
\n",
"
3.329688e+05
\n",
"
2.646413e+05
\n",
"
6.057430e+05
\n",
"
1.434176e+05
\n",
"
...
\n",
"
1.771805e+06
\n",
"
507751.595236
\n",
"
1.267975e+06
\n",
"
205780.737653
\n",
"
6226.894042
\n",
"
NaN
\n",
"
5.087788e+05
\n",
"
55918.782513
\n",
"
NaN
\n",
"
412516.399423
\n",
"
\n",
"
\n",
"
2
\n",
"
64334.385165
\n",
"
103991.537490
\n",
"
134383.992047
\n",
"
2.940818e+05
\n",
"
4.868833e+05
\n",
"
2.805029e+06
\n",
"
3.835312e+05
\n",
"
1.475784e+05
\n",
"
2.536358e+05
\n",
"
5.385814e+05
\n",
"
...
\n",
"
8.616884e+04
\n",
"
8745.529181
\n",
"
3.974022e+05
\n",
"
714117.521603
\n",
"
89465.857732
\n",
"
128332.630805
\n",
"
5.301655e+05
\n",
"
349790.454839
\n",
"
12587.59026
\n",
"
90955.620959
\n",
"
\n",
"
\n",
"
3
\n",
"
3142.606330
\n",
"
43202.971210
\n",
"
156562.667084
\n",
"
2.792880e+05
\n",
"
5.374176e+05
\n",
"
4.028233e+05
\n",
"
6.908980e+05
\n",
"
4.429766e+05
\n",
"
7.212855e+05
\n",
"
8.362954e+05
\n",
"
...
\n",
"
NaN
\n",
"
20938.965519
\n",
"
NaN
\n",
"
NaN
\n",
"
19996.986384
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
4
\n",
"
NaN
\n",
"
61865.265714
\n",
"
57298.919248
\n",
"
1.859610e+05
\n",
"
1.862006e+05
\n",
"
1.453144e+05
\n",
"
2.696107e+05
\n",
"
4.480261e+05
\n",
"
1.742546e+05
\n",
"
9.715882e+05
\n",
"
...
\n",
"
4.688630e+05
\n",
"
NaN
\n",
"
6.155031e+05
\n",
"
197934.940768
\n",
"
NaN
\n",
"
NaN
\n",
"
3.830643e+05
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
5
\n",
"
5346.166482
\n",
"
54954.008437
\n",
"
264498.220981
\n",
"
2.036823e+05
\n",
"
4.472988e+05
\n",
"
2.633055e+05
\n",
"
3.387926e+05
\n",
"
3.150558e+05
\n",
"
7.504150e+05
\n",
"
2.611304e+05
\n",
"
...
\n",
"
1.103665e+05
\n",
"
587681.103745
\n",
"
2.201814e+04
\n",
"
87364.263674
\n",
"
NaN
\n",
"
322793.116875
\n",
"
1.043557e+06
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
6
\n",
"
4222.377626
\n",
"
117425.751392
\n",
"
537503.282266
\n",
"
4.137136e+05
\n",
"
3.769690e+05
\n",
"
6.769168e+05
\n",
"
1.084063e+06
\n",
"
8.276801e+05
\n",
"
8.531432e+05
\n",
"
2.054070e+05
\n",
"
...
\n",
"
6.795053e+04
\n",
"
NaN
\n",
"
1.900894e+06
\n",
"
NaN
\n",
"
189803.137289
\n",
"
165066.293055
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
7
\n",
"
NaN
\n",
"
51733.238185
\n",
"
121187.914637
\n",
"
2.782337e+05
\n",
"
3.766345e+05
\n",
"
5.262455e+05
\n",
"
4.970687e+05
\n",
"
6.972138e+05
\n",
"
7.314588e+05
\n",
"
6.290212e+05
\n",
"
...
\n",
"
1.041520e+04
\n",
"
40683.584878
\n",
"
4.737402e+05
\n",
"
NaN
\n",
"
874535.741565
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
8
\n",
"
NaN
\n",
"
29161.090791
\n",
"
182951.743887
\n",
"
3.381624e+05
\n",
"
2.823336e+05
\n",
"
3.432786e+05
\n",
"
1.183421e+06
\n",
"
9.014267e+05
\n",
"
1.167906e+06
\n",
"
4.107145e+05
\n",
"
...
\n",
"
NaN
\n",
"
493829.570893
\n",
"
3.123278e+05
\n",
"
58747.903282
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
9
\n",
"
NaN
\n",
"
133157.263191
\n",
"
215744.746038
\n",
"
1.374049e+06
\n",
"
7.828536e+05
\n",
"
7.966235e+05
\n",
"
4.644824e+05
\n",
"
9.741834e+05
\n",
"
5.535232e+05
\n",
"
5.008409e+05
\n",
"
...
\n",
"
1.230771e+04
\n",
"
117212.190268
\n",
"
3.179059e+05
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
10
\n",
"
NaN
\n",
"
79641.863426
\n",
"
575926.050990
\n",
"
1.356863e+06
\n",
"
6.072203e+05
\n",
"
4.012266e+05
\n",
"
1.216483e+06
\n",
"
1.395769e+06
\n",
"
4.876399e+05
\n",
"
2.889569e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
11
\n",
"
NaN
\n",
"
100416.983371
\n",
"
292038.198343
\n",
"
4.448307e+05
\n",
"
5.126842e+05
\n",
"
3.632974e+05
\n",
"
1.872042e+06
\n",
"
8.211516e+05
\n",
"
5.397643e+05
\n",
"
4.108131e+05
\n",
"
...
\n",
"
1.069290e+05
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
12
\n",
"
NaN
\n",
"
71522.558157
\n",
"
458885.392198
\n",
"
1.747373e+05
\n",
"
2.250982e+05
\n",
"
4.301923e+05
\n",
"
3.891993e+05
\n",
"
1.278298e+06
\n",
"
2.775127e+05
\n",
"
2.709438e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
13
\n",
"
NaN
\n",
"
79064.667239
\n",
"
254608.617474
\n",
"
4.293419e+05
\n",
"
1.876411e+06
\n",
"
5.398142e+05
\n",
"
6.579055e+05
\n",
"
8.572567e+05
\n",
"
3.248639e+05
\n",
"
2.372064e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
14
\n",
"
NaN
\n",
"
96277.421753
\n",
"
497171.088993
\n",
"
1.677511e+05
\n",
"
5.025259e+05
\n",
"
3.275906e+05
\n",
"
5.593842e+05
\n",
"
4.950296e+05
\n",
"
6.022564e+05
\n",
"
7.874864e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
15
\n",
"
NaN
\n",
"
21066.291384
\n",
"
131006.302772
\n",
"
2.469400e+05
\n",
"
1.794551e+05
\n",
"
2.232539e+05
\n",
"
4.005883e+05
\n",
"
1.158106e+06
\n",
"
1.432307e+06
\n",
"
4.311331e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
16
\n",
"
NaN
\n",
"
40871.450031
\n",
"
181169.969846
\n",
"
5.136258e+05
\n",
"
9.165714e+05
\n",
"
2.441091e+05
\n",
"
6.139660e+05
\n",
"
8.670557e+05
\n",
"
1.456116e+06
\n",
"
9.063431e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
17
\n",
"
21559.053170
\n",
"
98325.244742
\n",
"
111475.307366
\n",
"
6.413985e+05
\n",
"
6.213374e+05
\n",
"
7.985672e+05
\n",
"
1.252059e+06
\n",
"
9.138599e+05
\n",
"
1.066295e+06
\n",
"
3.610327e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
18
\n",
"
NaN
\n",
"
51441.830587
\n",
"
135464.967542
\n",
"
2.466380e+05
\n",
"
3.549195e+05
\n",
"
7.319261e+05
\n",
"
4.614343e+05
\n",
"
3.535514e+05
\n",
"
5.865144e+05
\n",
"
1.090865e+06
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
19
\n",
"
NaN
\n",
"
70653.792105
\n",
"
453457.316593
\n",
"
4.380374e+05
\n",
"
1.137775e+06
\n",
"
1.579018e+06
\n",
"
9.959784e+05
\n",
"
8.986285e+05
\n",
"
1.351723e+06
\n",
"
1.012969e+06
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
20
\n",
"
NaN
\n",
"
143003.416713
\n",
"
780501.376194
\n",
"
3.219736e+05
\n",
"
1.125306e+06
\n",
"
3.863964e+05
\n",
"
3.987071e+05
\n",
"
7.493505e+05
\n",
"
5.173210e+05
\n",
"
2.957905e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
21
\n",
"
440.166014
\n",
"
96436.510110
\n",
"
932830.920427
\n",
"
6.675994e+05
\n",
"
8.898485e+05
\n",
"
5.927916e+05
\n",
"
1.256132e+06
\n",
"
1.541598e+06
\n",
"
2.055776e+06
\n",
"
4.470712e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
22
\n",
"
5071.193962
\n",
"
114720.424477
\n",
"
407660.107716
\n",
"
4.120153e+05
\n",
"
3.215467e+05
\n",
"
4.644149e+05
\n",
"
1.129388e+06
\n",
"
7.422531e+05
\n",
"
2.230668e+06
\n",
"
1.509081e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
23
\n",
"
NaN
\n",
"
67368.580343
\n",
"
296994.656315
\n",
"
1.742078e+05
\n",
"
6.093717e+05
\n",
"
6.336027e+05
\n",
"
4.269155e+05
\n",
"
1.150700e+06
\n",
"
3.514760e+05
\n",
"
3.263753e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
24
\n",
"
2538.223611
\n",
"
60928.691028
\n",
"
474989.573924
\n",
"
2.655743e+05
\n",
"
3.890088e+05
\n",
"
7.493399e+05
\n",
"
1.231399e+06
\n",
"
6.559668e+05
\n",
"
6.981326e+05
\n",
"
3.937930e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
25
\n",
"
1179.531504
\n",
"
17397.734757
\n",
"
125719.238936
\n",
"
4.522247e+05
\n",
"
5.405587e+05
\n",
"
6.677909e+05
\n",
"
1.147964e+06
\n",
"
1.547991e+06
\n",
"
7.713320e+05
\n",
"
5.950225e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
26
\n",
"
18834.212213
\n",
"
54467.867400
\n",
"
301098.228443
\n",
"
1.205226e+06
\n",
"
6.651762e+05
\n",
"
1.773508e+06
\n",
"
2.409755e+05
\n",
"
3.835268e+05
\n",
"
1.634412e+06
\n",
"
4.614016e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
27
\n",
"
NaN
\n",
"
16208.391804
\n",
"
129023.820713
\n",
"
3.686506e+05
\n",
"
5.212379e+05
\n",
"
2.942529e+05
\n",
"
4.663017e+05
\n",
"
5.628172e+05
\n",
"
6.043287e+05
\n",
"
6.298926e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
28
\n",
"
15268.662911
\n",
"
394082.054498
\n",
"
221508.422890
\n",
"
2.374703e+05
\n",
"
2.292117e+05
\n",
"
4.800493e+05
\n",
"
8.586132e+05
\n",
"
4.008364e+05
\n",
"
1.122428e+06
\n",
"
3.405180e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
29
\n",
"
3088.130242
\n",
"
11868.998623
\n",
"
171285.569611
\n",
"
6.625948e+05
\n",
"
5.220645e+05
\n",
"
4.140340e+05
\n",
"
6.895261e+05
\n",
"
1.054986e+06
\n",
"
9.524665e+05
\n",
"
8.048602e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
30
\n",
"
5760.506354
\n",
"
154821.974483
\n",
"
655525.150619
\n",
"
4.317146e+05
\n",
"
1.124190e+06
\n",
"
2.260838e+05
\n",
"
6.135078e+05
\n",
"
4.430098e+05
\n",
"
1.993302e+05
\n",
"
2.101516e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
31
\n",
"
4495.370500
\n",
"
39937.684328
\n",
"
156494.223044
\n",
"
1.601225e+05
\n",
"
4.273681e+05
\n",
"
3.515268e+05
\n",
"
4.448231e+05
\n",
"
2.566694e+05
\n",
"
7.195764e+05
\n",
"
4.164395e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
32
\n",
"
9929.179761
\n",
"
74453.718579
\n",
"
371373.646586
\n",
"
1.127049e+06
\n",
"
8.716352e+05
\n",
"
7.048680e+05
\n",
"
4.415583e+05
\n",
"
9.356616e+05
\n",
"
5.691857e+05
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
33
\n",
"
NaN
\n",
"
20348.062312
\n",
"
170218.459706
\n",
"
3.565538e+05
\n",
"
1.227990e+06
\n",
"
4.104408e+05
\n",
"
5.005702e+05
\n",
"
9.153730e+05
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
34
\n",
"
NaN
\n",
"
60272.602312
\n",
"
244223.415605
\n",
"
6.362106e+05
\n",
"
7.611882e+05
\n",
"
4.975266e+05
\n",
"
1.682282e+06
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
35
\n",
"
NaN
\n",
"
29157.569363
\n",
"
140597.374295
\n",
"
2.988598e+05
\n",
"
9.378148e+05
\n",
"
9.179868e+05
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
36
\n",
"
1740.439458
\n",
"
71028.928995
\n",
"
159736.350719
\n",
"
4.944280e+05
\n",
"
5.790932e+05
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
37
\n",
"
2417.098113
\n",
"
60756.081859
\n",
"
219417.111202
\n",
"
3.380309e+05
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
38
\n",
"
NaN
\n",
"
97489.963585
\n",
"
259540.894156
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
39
\n",
"
NaN
\n",
"
69383.491649
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
40
\n",
"
16522.338695
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
" \n",
"
\n",
"
40 rows × 39 columns
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
],
"text/plain": [
"development_period 1 2 3 4 \\\n",
"occurrence_period \n",
"1 NaN 46985.029619 392545.850638 1.859461e+05 \n",
"2 64334.385165 103991.537490 134383.992047 2.940818e+05 \n",
"3 3142.606330 43202.971210 156562.667084 2.792880e+05 \n",
"4 NaN 61865.265714 57298.919248 1.859610e+05 \n",
"5 5346.166482 54954.008437 264498.220981 2.036823e+05 \n",
"6 4222.377626 117425.751392 537503.282266 4.137136e+05 \n",
"7 NaN 51733.238185 121187.914637 2.782337e+05 \n",
"8 NaN 29161.090791 182951.743887 3.381624e+05 \n",
"9 NaN 133157.263191 215744.746038 1.374049e+06 \n",
"10 NaN 79641.863426 575926.050990 1.356863e+06 \n",
"11 NaN 100416.983371 292038.198343 4.448307e+05 \n",
"12 NaN 71522.558157 458885.392198 1.747373e+05 \n",
"13 NaN 79064.667239 254608.617474 4.293419e+05 \n",
"14 NaN 96277.421753 497171.088993 1.677511e+05 \n",
"15 NaN 21066.291384 131006.302772 2.469400e+05 \n",
"16 NaN 40871.450031 181169.969846 5.136258e+05 \n",
"17 21559.053170 98325.244742 111475.307366 6.413985e+05 \n",
"18 NaN 51441.830587 135464.967542 2.466380e+05 \n",
"19 NaN 70653.792105 453457.316593 4.380374e+05 \n",
"20 NaN 143003.416713 780501.376194 3.219736e+05 \n",
"21 440.166014 96436.510110 932830.920427 6.675994e+05 \n",
"22 5071.193962 114720.424477 407660.107716 4.120153e+05 \n",
"23 NaN 67368.580343 296994.656315 1.742078e+05 \n",
"24 2538.223611 60928.691028 474989.573924 2.655743e+05 \n",
"25 1179.531504 17397.734757 125719.238936 4.522247e+05 \n",
"26 18834.212213 54467.867400 301098.228443 1.205226e+06 \n",
"27 NaN 16208.391804 129023.820713 3.686506e+05 \n",
"28 15268.662911 394082.054498 221508.422890 2.374703e+05 \n",
"29 3088.130242 11868.998623 171285.569611 6.625948e+05 \n",
"30 5760.506354 154821.974483 655525.150619 4.317146e+05 \n",
"31 4495.370500 39937.684328 156494.223044 1.601225e+05 \n",
"32 9929.179761 74453.718579 371373.646586 1.127049e+06 \n",
"33 NaN 20348.062312 170218.459706 3.565538e+05 \n",
"34 NaN 60272.602312 244223.415605 6.362106e+05 \n",
"35 NaN 29157.569363 140597.374295 2.988598e+05 \n",
"36 1740.439458 71028.928995 159736.350719 4.944280e+05 \n",
"37 2417.098113 60756.081859 219417.111202 3.380309e+05 \n",
"38 NaN 97489.963585 259540.894156 NaN \n",
"39 NaN 69383.491649 NaN NaN \n",
"40 16522.338695 NaN NaN NaN \n",
"\n",
"development_period 5 6 7 8 \\\n",
"occurrence_period \n",
"1 7.006303e+05 2.610245e+05 3.329688e+05 2.646413e+05 \n",
"2 4.868833e+05 2.805029e+06 3.835312e+05 1.475784e+05 \n",
"3 5.374176e+05 4.028233e+05 6.908980e+05 4.429766e+05 \n",
"4 1.862006e+05 1.453144e+05 2.696107e+05 4.480261e+05 \n",
"5 4.472988e+05 2.633055e+05 3.387926e+05 3.150558e+05 \n",
"6 3.769690e+05 6.769168e+05 1.084063e+06 8.276801e+05 \n",
"7 3.766345e+05 5.262455e+05 4.970687e+05 6.972138e+05 \n",
"8 2.823336e+05 3.432786e+05 1.183421e+06 9.014267e+05 \n",
"9 7.828536e+05 7.966235e+05 4.644824e+05 9.741834e+05 \n",
"10 6.072203e+05 4.012266e+05 1.216483e+06 1.395769e+06 \n",
"11 5.126842e+05 3.632974e+05 1.872042e+06 8.211516e+05 \n",
"12 2.250982e+05 4.301923e+05 3.891993e+05 1.278298e+06 \n",
"13 1.876411e+06 5.398142e+05 6.579055e+05 8.572567e+05 \n",
"14 5.025259e+05 3.275906e+05 5.593842e+05 4.950296e+05 \n",
"15 1.794551e+05 2.232539e+05 4.005883e+05 1.158106e+06 \n",
"16 9.165714e+05 2.441091e+05 6.139660e+05 8.670557e+05 \n",
"17 6.213374e+05 7.985672e+05 1.252059e+06 9.138599e+05 \n",
"18 3.549195e+05 7.319261e+05 4.614343e+05 3.535514e+05 \n",
"19 1.137775e+06 1.579018e+06 9.959784e+05 8.986285e+05 \n",
"20 1.125306e+06 3.863964e+05 3.987071e+05 7.493505e+05 \n",
"21 8.898485e+05 5.927916e+05 1.256132e+06 1.541598e+06 \n",
"22 3.215467e+05 4.644149e+05 1.129388e+06 7.422531e+05 \n",
"23 6.093717e+05 6.336027e+05 4.269155e+05 1.150700e+06 \n",
"24 3.890088e+05 7.493399e+05 1.231399e+06 6.559668e+05 \n",
"25 5.405587e+05 6.677909e+05 1.147964e+06 1.547991e+06 \n",
"26 6.651762e+05 1.773508e+06 2.409755e+05 3.835268e+05 \n",
"27 5.212379e+05 2.942529e+05 4.663017e+05 5.628172e+05 \n",
"28 2.292117e+05 4.800493e+05 8.586132e+05 4.008364e+05 \n",
"29 5.220645e+05 4.140340e+05 6.895261e+05 1.054986e+06 \n",
"30 1.124190e+06 2.260838e+05 6.135078e+05 4.430098e+05 \n",
"31 4.273681e+05 3.515268e+05 4.448231e+05 2.566694e+05 \n",
"32 8.716352e+05 7.048680e+05 4.415583e+05 9.356616e+05 \n",
"33 1.227990e+06 4.104408e+05 5.005702e+05 9.153730e+05 \n",
"34 7.611882e+05 4.975266e+05 1.682282e+06 NaN \n",
"35 9.378148e+05 9.179868e+05 NaN NaN \n",
"36 5.790932e+05 NaN NaN NaN \n",
"37 NaN NaN NaN NaN \n",
"38 NaN NaN NaN NaN \n",
"39 NaN NaN NaN NaN \n",
"40 NaN NaN NaN NaN \n",
"\n",
"development_period 9 10 ... 30 \\\n",
"occurrence_period ... \n",
"1 6.057430e+05 1.434176e+05 ... 1.771805e+06 \n",
"2 2.536358e+05 5.385814e+05 ... 8.616884e+04 \n",
"3 7.212855e+05 8.362954e+05 ... NaN \n",
"4 1.742546e+05 9.715882e+05 ... 4.688630e+05 \n",
"5 7.504150e+05 2.611304e+05 ... 1.103665e+05 \n",
"6 8.531432e+05 2.054070e+05 ... 6.795053e+04 \n",
"7 7.314588e+05 6.290212e+05 ... 1.041520e+04 \n",
"8 1.167906e+06 4.107145e+05 ... NaN \n",
"9 5.535232e+05 5.008409e+05 ... 1.230771e+04 \n",
"10 4.876399e+05 2.889569e+05 ... NaN \n",
"11 5.397643e+05 4.108131e+05 ... 1.069290e+05 \n",
"12 2.775127e+05 2.709438e+05 ... NaN \n",
"13 3.248639e+05 2.372064e+05 ... NaN \n",
"14 6.022564e+05 7.874864e+05 ... NaN \n",
"15 1.432307e+06 4.311331e+05 ... NaN \n",
"16 1.456116e+06 9.063431e+05 ... NaN \n",
"17 1.066295e+06 3.610327e+05 ... NaN \n",
"18 5.865144e+05 1.090865e+06 ... NaN \n",
"19 1.351723e+06 1.012969e+06 ... NaN \n",
"20 5.173210e+05 2.957905e+05 ... NaN \n",
"21 2.055776e+06 4.470712e+05 ... NaN \n",
"22 2.230668e+06 1.509081e+05 ... NaN \n",
"23 3.514760e+05 3.263753e+05 ... NaN \n",
"24 6.981326e+05 3.937930e+05 ... NaN \n",
"25 7.713320e+05 5.950225e+05 ... NaN \n",
"26 1.634412e+06 4.614016e+05 ... NaN \n",
"27 6.043287e+05 6.298926e+05 ... NaN \n",
"28 1.122428e+06 3.405180e+05 ... NaN \n",
"29 9.524665e+05 8.048602e+05 ... NaN \n",
"30 1.993302e+05 2.101516e+05 ... NaN \n",
"31 7.195764e+05 4.164395e+05 ... NaN \n",
"32 5.691857e+05 NaN ... NaN \n",
"33 NaN NaN ... NaN \n",
"34 NaN NaN ... NaN \n",
"35 NaN NaN ... NaN \n",
"36 NaN NaN ... NaN \n",
"37 NaN NaN ... NaN \n",
"38 NaN NaN ... NaN \n",
"39 NaN NaN ... NaN \n",
"40 NaN NaN ... NaN \n",
"\n",
"development_period 31 32 33 34 \\\n",
"occurrence_period \n",
"1 507751.595236 1.267975e+06 205780.737653 6226.894042 \n",
"2 8745.529181 3.974022e+05 714117.521603 89465.857732 \n",
"3 20938.965519 NaN NaN 19996.986384 \n",
"4 NaN 6.155031e+05 197934.940768 NaN \n",
"5 587681.103745 2.201814e+04 87364.263674 NaN \n",
"6 NaN 1.900894e+06 NaN 189803.137289 \n",
"7 40683.584878 4.737402e+05 NaN 874535.741565 \n",
"8 493829.570893 3.123278e+05 58747.903282 NaN \n",
"9 117212.190268 3.179059e+05 NaN NaN \n",
"10 NaN NaN NaN NaN \n",
"11 NaN NaN NaN NaN \n",
"12 NaN NaN NaN NaN \n",
"13 NaN NaN NaN NaN \n",
"14 NaN NaN NaN NaN \n",
"15 NaN NaN NaN NaN \n",
"16 NaN NaN NaN NaN \n",
"17 NaN NaN NaN NaN \n",
"18 NaN NaN NaN NaN \n",
"19 NaN NaN NaN NaN \n",
"20 NaN NaN NaN NaN \n",
"21 NaN NaN NaN NaN \n",
"22 NaN NaN NaN NaN \n",
"23 NaN NaN NaN NaN \n",
"24 NaN NaN NaN NaN \n",
"25 NaN NaN NaN NaN \n",
"26 NaN NaN NaN NaN \n",
"27 NaN NaN NaN NaN \n",
"28 NaN NaN NaN NaN \n",
"29 NaN NaN NaN NaN \n",
"30 NaN NaN NaN NaN \n",
"31 NaN NaN NaN NaN \n",
"32 NaN NaN NaN NaN \n",
"33 NaN NaN NaN NaN \n",
"34 NaN NaN NaN NaN \n",
"35 NaN NaN NaN NaN \n",
"36 NaN NaN NaN NaN \n",
"37 NaN NaN NaN NaN \n",
"38 NaN NaN NaN NaN \n",
"39 NaN NaN NaN NaN \n",
"40 NaN NaN NaN NaN \n",
"\n",
"development_period 35 36 37 38 \\\n",
"occurrence_period \n",
"1 NaN 5.087788e+05 55918.782513 NaN \n",
"2 128332.630805 5.301655e+05 349790.454839 12587.59026 \n",
"3 NaN NaN NaN NaN \n",
"4 NaN 3.830643e+05 NaN NaN \n",
"5 322793.116875 1.043557e+06 NaN NaN \n",
"6 165066.293055 NaN NaN NaN \n",
"7 NaN NaN NaN NaN \n",
"8 NaN NaN NaN NaN \n",
"9 NaN NaN NaN NaN \n",
"10 NaN NaN NaN NaN \n",
"11 NaN NaN NaN NaN \n",
"12 NaN NaN NaN NaN \n",
"13 NaN NaN NaN NaN \n",
"14 NaN NaN NaN NaN \n",
"15 NaN NaN NaN NaN \n",
"16 NaN NaN NaN NaN \n",
"17 NaN NaN NaN NaN \n",
"18 NaN NaN NaN NaN \n",
"19 NaN NaN NaN NaN \n",
"20 NaN NaN NaN NaN \n",
"21 NaN NaN NaN NaN \n",
"22 NaN NaN NaN NaN \n",
"23 NaN NaN NaN NaN \n",
"24 NaN NaN NaN NaN \n",
"25 NaN NaN NaN NaN \n",
"26 NaN NaN NaN NaN \n",
"27 NaN NaN NaN NaN \n",
"28 NaN NaN NaN NaN \n",
"29 NaN NaN NaN NaN \n",
"30 NaN NaN NaN NaN \n",
"31 NaN NaN NaN NaN \n",
"32 NaN NaN NaN NaN \n",
"33 NaN NaN NaN NaN \n",
"34 NaN NaN NaN NaN \n",
"35 NaN NaN NaN NaN \n",
"36 NaN NaN NaN NaN \n",
"37 NaN NaN NaN NaN \n",
"38 NaN NaN NaN NaN \n",
"39 NaN NaN NaN NaN \n",
"40 NaN NaN NaN NaN \n",
"\n",
"development_period 39 \n",
"occurrence_period \n",
"1 412516.399423 \n",
"2 90955.620959 \n",
"3 NaN \n",
"4 NaN \n",
"5 NaN \n",
"6 NaN \n",
"7 NaN \n",
"8 NaN \n",
"9 NaN \n",
"10 NaN \n",
"11 NaN \n",
"12 NaN \n",
"13 NaN \n",
"14 NaN \n",
"15 NaN \n",
"16 NaN \n",
"17 NaN \n",
"18 NaN \n",
"19 NaN \n",
"20 NaN \n",
"21 NaN \n",
"22 NaN \n",
"23 NaN \n",
"24 NaN \n",
"25 NaN \n",
"26 NaN \n",
"27 NaN \n",
"28 NaN \n",
"29 NaN \n",
"30 NaN \n",
"31 NaN \n",
"32 NaN \n",
"33 NaN \n",
"34 NaN \n",
"35 NaN \n",
"36 NaN \n",
"37 NaN \n",
"38 NaN \n",
"39 NaN \n",
"40 NaN \n",
"\n",
"[40 rows x 39 columns]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"triangle.pivot(index=\"occurrence_period\", columns=\"development_period\", values=\"payments\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MAK7SfG549W1"
},
"source": [
"This can also be plotted easily with ``pandas``."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 434
},
"id": "OTRe3aBT49W1",
"outputId": "f8d60856-60ce-491a-85d4-4c657117df2c",
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAGQCAYAAABVgSDEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydZ2Ac5bm2r5ntVb0XS7YsyZZwNzbYgE3vBEJIIaSRXkk9OUnOl15OckjjpB5KIITejHEI1b3Ksi1ZvfddaXuvM/P9GFlG2IBNbBzIXn9kz+68+640e8+z9/O8zysoikKGDBkyZHhnIZ7pCWTIkCFDhlNPRtwzZMiQ4R1IRtwzZMiQ4R1IRtwzZMiQ4R1IRtwzZMiQ4R2I9kxPACA/P1+pqqo609PIkCFDhrcVzc3NbkVRCo732BkVd0EQrgGuqampYf/+/WdyKhkyZMjwtkMQhOHXeuyM2jKKomxUFOWTWVlZZ3IaGTJkyPCOI+O5Z8iQIcM7kIy4Z8iQIcM7kDMq7oIgXCMIwp8DgcCZnEaGDBkyvOPIeO4ZMmTI8A4kY8tkyJAhwzuQjLhnyJAhwzuQjLhnyHCGSEkyGw6NI8uZttsZTj2ZhGqGDGeIDYcm+NJDh9jR5z7TU8nwDiSTUM2Q4QzxctckAIfHM8FNhlNPxpbJkOEMkEzLbOtRI/b2iYy4Zzj1ZMQ9Q4YzwP4hL+FEmmyzjrbx4JmeToZ3IBlxz5DhDPBy1xR6jcjNqyoZ8UYJRFNnekoZ3mFkxD1DhjeJo7eb//3Ye/FPOk/63Je7plg9L4+zq/MAaHdkrJkMp5ZMtczpJOqFjg1nehYZThMd2zeTiEQYbj1wUucNuiMMuCNcWFdAQ6kdgPaMNZPhFJOpljmd7P0jPPIhCIyd6Zm8KQKBAzQ1XU86HTkt48uxGIGNz6Aob786b0VR6N+/F4Dx7s6TOvflrikALqwvIt9qoCTLSFsmqZrhFJOxZU4n483qT+fhMzuPN8nk5CaCoVYike7TMn7gmWeY+PrXSXSenDj+K+AaHiTkcaHVG5joObn5b+6aoqbQSmWeGYCG0izaMuWQGU4xGXE/XSjKK8S97czO5U3iD6jzj0aHTsv4yYFBABK9vadl/NNJ//69IAgsvfxqApNOIn7fCZ0XTqTZO+jhovrCmWONZXYG3BEiifTpmm6Gf0My4n668A1CbPoDP/mvGbnHwkkObxk7ri2STkcIhzsAiMZecyevf4rk0BAAib6+0zL+6aRv/x5K5tdRs/IcACZO0JrZ0esiJSmsf6W4l2ahKNDpyPjuGU4dGXE/XYxPJ9ly554+Wybmg9ZH3vTpXbucbHuoh6nh0DGPBYMtKIqkvsxpitx9oz466m8h2jtwWsY/XYQ8bqYG+6lZsZrC6nlodDrGuztO6NyXOqewG7Usn5Mzc6yxTM05vdqakSIpvI/2IMczEX2Gkycj7qeL8QOgNcFZ7wHvICTCp/41dvwKnvgE+N5cZO11qHMa7z7WUlAtGQG7fSnR2NA/Mcnjo6RS9OoX4yxejXP87VXjfSSROm/5KrQ6HcXz5p+Q7y7LCpu7XZxfW4BOc/SjV2Q3kG/V0z4xO3JP9PmINk+SGMj48RlOnoy4ny7Gm6FkEZQuBRSYOrHI7oRRFGItTwAgufvf1BDeCbUKZrzHf8xjgUAzVkstdnsj0ejQKa9oCfQMM5m/FABPyoYcjZ7S8U8n/c17ySkpJbesHIDS2gVMDvSTSiZe97y2iQDucIILX2HJAAiCoCZVXyXuaXdc/emNn8LZz8Yb9562sTOcWTLifjqQUuBogbLlUNSoHnO2nrLhZVnh4Q1PYwqPAjA2cPI3DkVW8DhVQXX0+ZEk+ehjikQgcJCs7BWYTVVIUphUyvOm5tnvOv43lvbNIyiiDqMmRcA+l0T/28OaSUSjjLS1Mnf5KgRBAKC0biGylGZyYHbuIBlPs2/jAFJK/d2+1DmFIMC6usJjxm0ss9M7GSKekmaOpT0xAKTTJO69vl7WPbyODs8pDjwy/EuQWcT0T9Dt7eYne3+CJEuzH5jqhHRMFfescjBmHbdipt8V5qd/7yT9CmF9IwKxFJ+4bz++/Y8goSGpaPCOnXypYsgb51CRht/ckMOUVsE1ctR3D4e7kaQw2VnLMZnmAG+uYmZDyzgX/3Irg+7ZdfKSJNPVnSbX28GcWgtBexWx3rdHUnWo5QCylKZm+aqZY6W19cCxSdWBgy6aNg0x3qvaXpu7p1hakU2uRX/MuI2lWaRlhZ7Jo3+HtOf0Ru5joTEUFEZCI6dl/Axnlswipn+Ch7sf5sGuBznsflXCdEJNpkbt8+ncuRWKF8HkseL+0L4R/rRtgOfaJ0/o9TodQa793x1s7ZniZusBxJoLcWqKkTwnH/V6HRHcdg0RnYAtJs/y3f2B/QBkZa3AbK5S38ub8N1393tQFGganP3Vf+CAi3hKS6WvifKV1UhaE+6O0ZMe/0zQ37wXo81Oad2CmWNmexY5JWXH+O7uMfVbS2AqxlQwTutYgIsWFB133KNJ1aPWzJHI/XSJeyil3kj88WNtuVOBLCs83jxGIi298ZMznHIytsw/QZOzCYBtY9tmPzDeDKYcdr2wg7/f8T8ELbUw2Q6vivCHWntYO97CX7Z0veFrPXVwnOt/v5NYUmLjDWZs8QmEhuuJWiqxRkaRTnI3H+9EBFeWhiqjnsJiyyzfPeBvxmAoxmgsxWgsRxA0xKInn7RtHvbN+nmE1s1jmOUgpXlJSuarVSOTo/96nnsonuL5ztEZq0RKpxk80MTcpSsQNZpZzy2tW8BEd+es3IR7TBXPwFSMLd0uANYfx5IBKM8xYTdqZ1aqyok0cjgFGoG0N35aVvEGE+qNxJc4sRr9k+XgqI+vPtrCkwfGT8v4GV6fjLi/SdwxN0PBIeB44n6AdNFSunapx6eUIkhF1aqZaRJpieJ9W/jPpvvpGZw6RgCPkEzLfHdDG7c9fIhF5dk888W1LPC+DKIOj30xHc5sSpQpuk6y8ZTXEcGTo6HGJFFWmzPLd/cH9pOVtRxBEBBFHUZj+WtG7qnk8aMyXyRJv0u1Y1753qaGgzgHAlRM7cJQVYU934SeBO7gsVbFmUJRFJ48OMa6O+7hK3uvYf1vHuUfbU7GuzqIR8LMW7HqmHNKaxcQCwXxOSZmxnCPqpG73xXlpa5JSrKMLCixHfc1jyRV26fLIY9YMoY5dkjLyKFTX1EUTKrifroi96mgmmA+0m4hw1tLRtzfJPudqnVxWdVldPu6cUamOwMmIzDVQV+qikREFbeJYFJ97BWLmdongqxwtBOvXQDZOdy5/VhrpbPHw1d/toN7dw3z8bXV/O3jqyi0GqD9KZi3ntYduxkcCROI6WntObmKmUlHGI9ZwOx9CHPlY6STElNDIeLxCRIJJ9lZy5lKpPjt8CQGU/VxI/eBQy7u+sp2HP3H3lgOjqqCPicl0ucKE4ip4nR48xhavUhR7wvoq6oQBIECewqfrhg5cnp62JwMHRNBbvrTbr78cAvWrDEEQUJjGubT9zfzv/duQNRoqVq87JjzyuoWAjAxXe8e9iVIRNMggH8qyo5eN+vrC2eSsMejscxOpzNESpKPivv0N5u079RbM0fE/XRF7u6Iet3v6HNnrJkzQEbc3yRNziYsOgufWvQp4BXRu6MFGZl9fYPorCn09iQDg3uQtNpZi5naDvVS6x8j/5KLuHlVJc+1OxnxqNZEIJri5/cc5NlfHaJ+LM1/r5rHd65eqNZGTxyAwAgsfBej7WoFzkA4l9G+9hOeuyIrOHK2oggi1UqYQPwuipb9jbEeN36/etPKzl7Bn8Zc/GTAwZBmCdHYseWQQ/vHkNIyL9zVRiI2e6FN87APEViW0AJwaNRPNJikZ/8k8+uMaKU4+upqAIoqzcTMRQTazlwbgkAsxfeebufqO7bTNxXmZzecxbkL1BvS1Svge9csxOzoZNBQyk+eHzim/3puaRlGi3WmidgRv720JpugK040Ic1qOXA8GsuySKZl+qbCM367cX42cHp891By2jZKnJ6CBndIjdyjSYm9A5mSy7eajLi/SZomm1hWuIya7BrKreUz4p4e20PT3FxcwynmrqylZG4DoakUnQ1FKK8Q99CWLQAUX3EpHz63Co0ocOeOAe7eMcAXvrsF814vikWLId9AusWPfKSipv1JEHWECtfiGlZtnsFwLsGJ3hP2ZceGtxGZr0aYDT9upzh1MTk1W/HG/h8+/z40Ggtmcy3PutQPfYdSgyRFSCZnb+Q80TqOMeYi7Euw9W9ds16/edhHiaChMi0iTP+/Y8cEclqhJk/9oOurqgAoXVwGwPjBU1y14emH+66DoR2v+RRZVnh0/ygX3b6Fe3cP8YFVlWz+2jred3Yl/X7121Cfv5erK0VsqSD5C5dx3+4h1t++hYd2DhHt8qIoCoIoqr77dFLVPRoCAeYuKUCRFfJFkXPn5b/udBtKj65UlTxxRKsOXZEFBJCmxf5UMuO5x09P5O6JJLAZtBi0YsaaOQNkxP112DG6mc/tuIN4YnaNtzvmZjAwyMrilQiCwPnl57PXsZdgdJwDkXvpn8oHRWDNdd+krPZskkE9E6YUo1ILoPqxuS37COQUop83j0KbgWWVOTy4a5jmh/tYFdLgrjTxhyuyuL9Oh38yStceJygKSvtTRPLXcP8PHgDAmB3HmzSTGxlhwP3GtkYsNk7f0FcYTcxHI6Wp9How/HcfmsCtaLP34HRuwG47i954moGYGnm1JlVReqXvnoynCSSMFE82Ua/voXf/FN17VGsqJcm0jAYoikN2loF8SWB/r4u2rWNULMjB5BkEQUA/pxKA0hXzEGQJ5+CxbRD+KTqegoEtcO81sPXnxyS0hz0R3vOn3Xz9sVYqcs1s/PxafvSus8g265EVmcGAevPs8nXR17QHgC/f+i42fmEtl9gtVG8cxvuXdg5uVn8vpbUL8I6PEguHcI+FySowkV9hBeCcwixM+tlJ2FdTnW/BrNfQPhEk7YmhzTMh6EQ0dv1pidxnPPfE8T13fzTJFx48yNAJXFfHwx1KUpxlZE1NPi93Tb0tWzu/ncmI++vw85EYj6fO4772+2YdP+K3ryxeCcAF5RdgFaI0Nd9IWAgT7SqitG4hOSVlFMyZC4DRP5fesjRex3OMO30scHQTW34OLWMB3vunPXT0+3hf2MCClJaXzzLy8ForNxZZyLJ0IpeaaHpmEHfTNoTAKLu764lHdiNoZKouVSsRcqJudve5Xvf9SFKMw4c/gywnmRotp9zrpuqXvyQ1MUFpmxVH0y3IcpRItJ+NTgcAl+XbORjRISHO6jEzvqcHBBGzNEXpjrsorbGz9aEe/FNRuhwhYimJsrTIkosqKU2LhAfDRAJJFq2vIDk0jK6kBNFoBEBn0mOX3Lj9ry9+J83YfsiphsYbYfOP4a/vgpBadrqrz811v9tJ31SYn9+4iMc/fe5MOSLAeGicuBRnQe4CAokAXU07KZo7H6sth7KDHr7glMi36AkLCi3PD/Lxe5tQCtU1AY6eLtyjIfLLbfg1qqAtzra84XQ1osDCEjtt44FpcVd/P5oc4xkR9519Hja2TPDp+5uJJk++v40nkiDPqmd9fSEj3uhMgv1kmAqevtW573Qy4v4aDEQT7EuUIEpp7vcX43a/PPPYEb+9wFTApoFN1Jn13FaYIJXyU7ErTSAIjesuBqBwjuorW9MXYYlKtHV/g56Nj2GQ07itFfz5a79gatDPLTEjObLAxtw0H353PYfWNvIzz5NsaP0iHVVRwr4Ee/+2G0nR4rHF0JriWEsS6KWPYjfEEaIJntn60mu+H0VR6Oz6FqFwB/rd6xjPLqAuN4v+xhwsF5yPsuF+8JsASKcDPDnazlKLhqtNFsIyjAjzZkXuo9tVW+dgfpRoMs45dQE0GoEX7mpn/4D6Tac0LVKzopB5RgMNURFTjoHKxjySg4MzlswR8swxfErOrJWy/xSKgjKyl6jHgHTx/8B1v4PRJvjjGl7c+CC33L2PAquBpz+/hptWVCCKsxOdfX51UdVVc6/ClBDxDAywoH4tk789SHj7OJZVJdi/vIxn1+Sx2GjgUL+XD290oggi3QdbCLrj5Jdb2TXuI4lCqVZ33GlK4dkreBvLsuibCCIFkmjz1L+HNtd4WlapHhH3WDpGPH3s+J2OIKIA3ZMhvv1k20lH3u5wknyrYabdwstdJ7ae4wgHR3ys+ulLbOt5/aAlw/HJiPtrcNeok8Vd+/jyfT/BGS5mQ+fdpNOqbXDEb/9L+1/45vZv8o+mjyBoTNztzmZ4Ig+tTkvt6rUA2PILMFgseIICi9qDKHIK8+4/EdcZyXrpMW6YcnKTX4fdqKX8fXPpllMozhgGUUTu2ERz5GoW7FXtBEdqIV7bMrTVW0kG9VQvvhiT5XLyjAb8UT0DUZE9mz+LLB8bZY2O3s3k5NNUlXwG05P7mSgoRh8ZInT1+0m8/0rkaIR5o1tQFJH8+nsYUCpoiDxE+VObAejTnjurYmZ0KIQseVDkOIGCXKSt/2D9LfVMDYcY3e4gR6uh0GzAmmNgaWkW5ZIGZZ4FQVBb/b5a3IvKjMiiDlfvbF//TeMbQoh5CDQ78Nx5Jyz9IKlbX2JSsnDh/s/wm4KNPPHps5mTd/yIuj+g+u2XVV3GHKeNxuzzKOoqRElK5H+skZx31fBiKMx/W1J4dbDpyrN4/7k1TOnz2b5NXf9gLzHzcpeLmEFACh5byhhra6N71Wrir+hn31BqJyeliqg2X43ctblGpGASJXWKbnzThJIhLDr1/R8veu90BJlfaOO2i2p58uA49+85ubUO7nCCfKuBsmwT9cW2k/bd/7p7GEWBfYOZZOyb4ZSLuyAIoiAIPxYE4Q5BED58qsd/KwilJR5y+rhs8HnW2nq4fufjPJlcS2/fT2f89uVFy3l26DkA2pI5SKVfpSccpiNUyPyVqzGY1V12BEGgYE41rnEnZm0hC0P1WNsipM0asNfTXXczOYFeLpHiXC7qmJtv4c7tgyj+Ef7gsfDJ+l4UWz+G9VESspWd/kYUWY0yD/ZHeXHvk5j0hUiKSI4/yHB0H01730cyeTRP4PXupLfvZxQWXIHp4RDjuTkogkDxzh3kB2Fq4wayb7yRrANDSH0l7IqrVtLZqRbiZ/2ICgW6hcaZyD00MoxfU4BGmUKr1RCeX0345ZepXmBn4Xml5I0mWJzUEqkx850HmjEmZFIoHJQSSB4Pcjg8UylzhNIGdeXm+P5T1GNmTLXOYh49nnvvwz04yoc2hrjA/11aC6/m6sAD2B66/jW3QOzz91FsKSY3aONb4dtoyDkX89JCim5bjrFWLU98wR2k1KBjoahF0+Xje9c2cO45y8lNTKIoEv/xxGEaDoWxZBkITB2bEN1zqA1Bknhxx96ZY41lWZRNfyyPRO6a6Z9p/6mL3lNSilg6RqVNzXu8lrjXl9j4woU1rK8r4AfPdHBg5MSSr/GURCieJt+qrl9YX1/I/iHfTEnsG+GPJnnmsGoNtmZ2qXpTnJC4C4JwtyAIU4IgtL3q+OWCIHQLgtAnCMI3pw9fB5QDKeBtuXnow04vsVSaS6VWzikY5Tvah6npHqd5Yhtb+v8GQLm1HE/MhYKGPTErayqupGLKTErS0nDh5bPGK5hTjWt0CLmoAd0+N5qQgDamoa/mXVQIzSw+dAf+3kcIbhrkJ1Y7HeMBhnc+xsacBDZDhKyy32EKb2CuYTcO/yX4BxpQRBGNwQaiQjy7Ep0gsSDWw/7mcwmFW9i771oOt23k/+78KS2tn8NiqWGu+DECjzzKgYUXAbDyQA9JDdj+sYe9jeeh6CBro8zT4x7qzQaW7/8Qsi5GQ3yAdqmcSHQEWZZ59td/BNHM4go3xXoPfk0aORolvH07NZeW4xZlFgcFspIpPnM4RmQoxKhW5oAjSHJQTVK+OnLPXVSDIeHD0XdUZFKTEdz3tCFH38QCnrEmZEkkEdCCJPHEl75P87CPn9x0Nks+dz/c8H/gaIU/rj3ae/8V9Pv7OU84m6k7DmJTrDyleZzcm+oQTWppZ1yS2eILcXGeHfPiAuI9PqRIigVLFiMoaUSth8a4QI4sUpBtJOiOHa14mqZjRM2X7G/tYCyu1oTXFFqZI6q5B22ucdbPU+m7B5KqYFbaVXF/dcVMIJpiIhBnQYkdURT41XuXUGQ38rm/HcATfv3ulwDe6Rr3PKsBgIvqC0nLCtt7T8xiefzAOMm0zOLyLA6P+c9YMva1Fum9HTjRyP0vwCzFEgRBA/wOuAJYCLxfEISFQB2wS1GUrwCfOXVTfWuQFYW7x9yc7z5EjcVLJHcRksbIr6d+S0Gfje0992LWmunyqPe5qP0q3NExfAkfS0YsJI0ylQ2LZo1ZMKeadCKB31SL82ARCnCw8ePoxThL8u8huzqCuX8nHdFmyoci3C5aaGvZwXkVo/xXaZyC2hgN5ucoPetvICYJjigUWOeQSqiiNylqqbT4KIk6SZS9m76nq4mHQjidX6G09EESiQRe7/tw/OxXYLHRXrMSjSJT7XBwz6V6RFlh9ME7CV+SRnEmOZCIU+VKYgiWYI0sZa5mM0FZz7CcR8tLTzLuUi/4emkDJaYQbl8AcnIIPfsPWh0hnrEkMQCrHSnajQKRtIKco2MinsTXrdodB/QObn3uVlY/sBpX1IWuvJys0DAu19EPcWjbOPFuH5EDb6KMbqyJmM8AikB7bjVrenfx8BXF3LBMbdPLopsYfs+z7FYa8VuqZp0qyRKDgUEucqxE0Sj8Y+wuns7dSTR1tEXCbn+YqCSzLgKmxQUgK8Ta3JTWqU3EjCY3JdN2erZJhywphLxHRTGUlnA7VQ+6bHKCr3ePoigKOo1Io8lARATRrPr0R8T9VPruR2rcj0Tur65173SqfvyCErv6Hsx6/vjB5XgiSb740ME3bHfhnr4B5E+L+9LKHLLNuhOyZhRF4YG9wyypyObGFRX4oinGfKe+FPSNCPsS3PWV7fQ0Od/y1z4VnJC4K4qyDXi18XU20KcoyoCiKEngIdSofQw4Ega87W57m70hBmIJ3jP8OEZNGt26rxJ739Mc8JVy2cQubusa4RJRwxNDW0jrKojZLkNB4OlD95HtMdFVHsKfnP1BKZyumBkeKEYZ6iZmyCVmn8cF9j8yvloidr4eUSNT2vFXdht7WSqLTFZGWW2VGEpk053UEMjV4J6bYP51X6PmmhZyVjjRZ42jUwQCgsBcqw9tOsnwhIuzr/gcB19YTsBfhNEQA+Xj7Ns7yMa8PKau/ACTOUaKvFOEjRK+whXsaBBZ19dG6GyRrcvWoAgCZYe8RFF4aHAN83WqxdEWO4tt992PWSlEJ8TJFQYpKbQiywqp884ltGUL+/tdBPUwJ0uLBfB6UvhytSyuzwNg9/YXSWnh8x3fp9fXSyQVoXmqGUGjIdcQIioZiPgTyIk0kZYpHMiE9zpOLnJLxVCcrQS9qrCksrMQTSYKHr5n1tMeGzLyfv9nODg5O0cxFh7DlNBTMZGLxzhJSi/jzI3T6z/qjT/vCWIEah8bQo6l0RaYiB5yYcnKRRDtxEMjIAgYzNqZ6C/gOnpz+Ic7gC2kCuhSn4vN3hAPO9WPWJVGy6gizbxn0apD0Ikzq1ZPBUeSqXPsaoXPq1epHtnyb0Hx0XYJjWVZ/Oi6Rnb2ebj9+dfvROoJH4ncVVtGIwpcUFvA1m7XG94Y9g166XdF+MCqShZNVzAdPgPWzGCLCyktk19+/JYR/+r8M557GfDKVn5j08eeAC4TBOEOYNvxTgQQBOGTgiDsFwRhv8t1ZrLhnnCCJw6MzbrY7hxzUaTX0uDvIaFo0S+8kpKFSxms/zSPjjZiS8l8pa8DX2QIi3QO72vVcc7orQzuFNAYliMbG3j+5d2MtHtwDgTwOiLklFQgCCLObTtBTjFWdj7lpn0k8r3Yq65mfE0WhrNjaMai1KR/Rs/y71BV2suYy0ruYIz7PHrSLTEq934ZzeD5IAuYaw6yeMlzrFrzGIXVTRhy1ChPHO/C1riKmH0O3TsWo/uBhXXzrmNdSysJi4Utgh93jsK84SG6qu1Y9JU8ca6AJi3RtX0tOy6+hiKPi48PHyZVbmWDo4biuEK+7OegdxmCIKMXiijS9TAxsIDQ86pgRUqzUaJRmjrGmKfRU2LU4BYUvCmF7TUC/X0bEFBQehyErTY+Ev8Yn0h/ghWeFbROqittC4tUy8M5ECDa6uLZdIL3EOZ2l4/IwEn0P3G0IMhpErFSTOd9gwYlQf7HPkbohReItbTMPG37dPJ2+FV13H3+Pi71n4soC7SObKZ80SIUUW3xDGpk+bw7wDkxAaMMqdEw5sUFJIcCePv8CJoS4sER5i7Np6DSRmy6L8wrffcNU35KImr0bJ0YZ7XNxHf7JphMpChIK4woMqNe9fmCIJzycsgjC5jKbeo3mVf3l+lyhMiz6CmwGWYdv2llBe9bWcHvt/TzfPtrR7SuI5G75ej5F9YX4okkaRl7/b/lA/tGsBm1XLOolPoSGzqNcMbEPbvITE6x+S1/7VPBKU+oKooSVRTlVkVRvqAoyu9e53l/VhRlhaIoKwoKCk71NE6Iu3cO8pVHWvjigwdJpCX6onE2e0N8wOynSuvDbZ0PWjXyuOqWW+mTivn9xCKeyletlU+16ZnXE2WBcyELx9ehM69j9fhNuJ82svGOFh7/eTMPfn8vyck4NsGM4FNXYE4WLOAy2/8SmnsTDQ23c955+8j56aNos0HXIyPkjtEXF5n0BvmBWeSDgSAvmgv5SMM5DEcb6H92AXt2vpdw4BbsuiVUVLQxujbO3HUTNOg6ufuZbej0evI8U7TklTB2x28p6uzk1quvRq8pxGfSM29ijESZhSxbPY5cAUe1jrVbmugzalnV0Umi+VHmLM3nwvpixsfWUSe0MJw3l/m1EDWXoB8YIdjkw+SNY1ESuD2jpAuK6AxKXJGEwoTC4+Upmmt8tFRZMeoM5JIkLxyEolJyjDkE/AHmBOfQO6xGxIW1hYhyiokuF+PbxngYNfp7jCQfefDgjI/7hoyp1SpC9rVo82owmxvJuZcGtGwAACAASURBVOUWNHl5TN3+SxRFIRBN0TotMkOe2R0p+739XOFfQyI7hcs/TOPqdVh1Vnp8PQB0RuKMJ1KsGVbFNjkawrSkEBQINE0iastQ5DA1y0xkF5kJumNoDZoZcfen0mz1hqiMqb6NkkjwP9k6ErLMf3SPoo9JjCHTPnFU0I5XDjkYGGRj/8Zj9xM4AY5E7jmONmx627GRuzPIghL7cXvhfO/aBs4qy+Krj7Qc06v/CEci93zb0YZwF9QWIAqw+XWsGW8kybOHndywtAyTXoNBq6G2yMbhsbdW3BPRFOPdfqoX579uP6B/Zf4ZcR8HKl7x//LpYyfMmd6so3cyjEmnYdNhBx+9p4k/D0yiFwQu7bofo0ZCaLh+5rlGq5XgmhIsfiv/Z2tEr5gQgvXMM+7Et3ITf171VSZqf4Drht08s+K3XPfVxVz9+cVcfEsd/nv2YPW5sCQkIqYiKsq24DEYsdVewvPPP48sK2QVriL7h99g6haFdFBg85iOx4xm1sbifMUXICaGiZsiTLS1oi+bQ1rWMXWgDjzX0bfv/QSdldhqAqx71x6qcu7mvPNLOdvhIa0R2NHfju2aq8lbtZpYciEIAvmeMcZzV2CY6GT15Dn8/exc9OkU73lxE+NFJShRN94DGyiv2s+LPaXUSZ1ETHbCXXkgiFhTI3zu69+nqf4sskJJHCPjjK2/GkkQWSFo8eugQzvBFtkKgkCdYS2LLdnkh31Ur13LRz/6UT74wQ8C4HF5SMkpzLU12EIjjLdNMemK0I/MqupcrkBHazjGtXdsn7ELXpexJhJyFpqitUjpOIbKtUQGx8n/zGeI7ttHZMcOdg+4kRXQa8VjBCrV7ac4lU9zz98pX9hIzcrV1ObUzkTuz7vV63WtI4Vo05McDaLNM6Irt8KAH1Fbqo4TGyO7yEwqLmHPNeKftmX+7g6QUhRyggF05WrkXOx08LWqYv7hCfJSoRaHIM+0/wVV3NPeOI6wg7+0/YWbNt7EtU9dy7d2fIu9jr2cLEc8d/vTt5EjGmZVy6QlmW5niPri49sRRp2G39+8DI1G4DP3N8/aPeoI7nACk06DWa+dOZZt1rNiTu7r+u6PN4+RlGQ+sGrOzLFF5Vm0vsVJ1aHDHmRZYe6SMxN4ngr+GXFvAuYLglAtCIIeeB/w9MkMcKY36+ibCrOuroBf3rSYfYNeHnm6m8tsVrIHdpKQNBSs++ys53fkjzBRpCMkj5MduoSEYkPRDvHDwXtYlkiyJy/MmvkrGdP147ANUFZrJLt9kuhLv8MoG8mNRBgsnMsV+sfZYj2PLVu3sWvXLlpbW0kmPfRa7kMQNeT9VodZSqEAl44rRAWBb3t8XNH2WwwBD560hJCGhKuQHU88S4mmjsO951G+RWDyQB7lOSMkkz8k/N4RGuzjeGxGRhc3EHTFmDKqFRsRoxOtopbYlcVKiRsX0tVYw/Vbn8ORX8iB+kX47rmLl1v/wHznNsqH1MKnEbu67+lTH1hDhaOXTesvJSuUIBSHw7kNlCBQpog8Ua6nx2lEn1D97G6LyAVCFJ0iMabJBcAwOYlGkcmKmOn19WKYX0NWYACvV+IZJYlWFPjKJbX0IfE7LCTjEjf8fhebWtUSOSUtH9+qGNtPNDUXJZ2gS98NGi3u53rIuek96CoqmLr9l2zvcWE1aFlfV8Cw56i4B6acLNlXQCwdpvjCRt7znR+j0xuoy62j29eNrMi84AlyliSSLwvY1pYih1JIgQTmxYUYomlsugI0OgPj3Z3kFKlf6Y1W3UzkvmHSzxyDDtHnw7xc7TCZHBzk0xWFLNLp+fkCA6lC88zGHb64j9Z0J0pS4j0P38DtzbejETR8bsnnABgInHz56JHIPUuWyVaEWbbMkCdKIi3PJFOPR0WumZ/dsIguZ+i4kbgnnJgVtR9hfX0h7RNBnIFj/26KovDgvhGWz8mh7hU3lrPKsgnG04x437qe/4MtLsx2PUVVr/07+FfnREshHwR2A3WCIIwJgnCroihp4PPAc0An8IiiKCfemvAMk0hLDHmiePUC1y8t48ar5qNE0nS+0E9xYoJR8tGZj15gnpiHfp+THQ1nIygRFo9VgZBiXJnkUxX/yeq4yBQJrJs+Rm0yyYbNX6L/138l/MwDJL1DJI3zERWQiqdICDr82kW43W4sFgs7d26hpfWTJJKTjIzOo7dAocls5KO+CCsNflq12dhkhQ8HdyFrNMjWLJavXI7RrEVrWkuO1YAiCES1BYwfKGXDE5ewp8uInKWguTlM4/t7GXD8iZ79WwgZfGjTafQ5AAKCIBCwesiPF7Bt2bmIisKfH3iav17zAcRYgvdsycOUjLFowxBZio9oXiVZeiflz2/hluIcLBesQyeKaAU9LZMKN6NFFuDveTFCMTMPfOgc9EmZZrtAw6T6xa45bEKORGj6f/8PCYF5nhwOuw6jKyvDHhtDQeSALLG60oviuhmhIIFJJ3K3NZv6Yhufe+AAP/zVLsZ+sBvnL5pITb3iQx8Yh+A4irCC5PAO7DdeTmq8GZ3XhpIWKPjiF0l0dbGtdYTVc3OpsaYY9cVISTJ9+/fy2Le+TYV2LgNlTs7/4EdmNuWoz60nlo7R6h3hQDDKWkcK47wsDHPVro3JkRCmRXkoikKlWUtpbT0TPZ1kT4u7VicSdMeYiqXY4Q9xo92AkkxiqK1DtFpJDg6iFQV+olgI6QS66iwcdozyuRc/x/pH1nPfhNpL6PPVn2bT9Zt48OoH+dSiT2HT22Z64JwMwUQQk6BFB2RL6VmR+0wy9XXEHWBdnWqzdDqP7QnkDifJsxiOOX5kterm7mNvCHsGvAy4I3zg7MpZxxeVq8Ff61tkzaRTEsPtXtWSEd+elgyceLXM+xVFKVEURacoSrmiKHdNH/+7oii1iqLMUxTlxyf74mfSlhlyR5EVhe3pODt8YbZqUsy7oIwVkd2YxDRjOWfNev4TbU1EBr+Ax+pGkUXmeQsoCPdzzvNDKIMxfrzgDgRFYKei59HxSb7WUYFxIEqiZxPd57yLAr+bpEak0jbMRts6PO4gjY2NXHnlFeQXPE0w2EIo6z3ck/Rx18Ua5iZS3DwcoVhKsyHbwv32XOYrEZaVqRUVK1edzYIVRWh0c2jtSGFSBHqEeejMZipCE5RtPofC7+mw3G9CP6FQvHyKoOELeGoDlAQdmM0FpEUdtbW1yHKafQX7sCcTvHzZhWiGtnP9IQ0vLSomqbVQ6g9x97IvsCDVhzlgxWILIksyy6+8lmttEs+vWs+inPPpUSQuxcCLRTocgTgNZWaWzcnl3AI77XYNOQ5V3HfFLDh/+COGtVqEVBJFl8XktheREZBlNYrOTomsyHkEUdCzLPdpHk7FyXYn+J9xiavRcdekj28bk0QUhXjPK/ziab89JdcTGN5O48I5hKZ2Iwo6wrsmsF91Jd5FKxmNC6wxjlDV/BMkWeHJe+9nwy9+SE3uChBAXje7g2NdTh0AjztGUIA1I3GMC3LRlVhAK5AcDeF0RHGnFSpNWsrqFuIeHkJvktFoRRRAlhQ29U8hKXCVRrUytPl56KurSQ4NATDPm+LW4RR9JoFA5W72OffxkYaP8I1Lvw3AtXlXzNSmC4JAtb16ZtOYkyGYDGIT1SR8diI6y3PvdATRigLzCl+/H45Rp6Eq30K381ir7Mjq1FdTW2SlLNvES53HivsD+0bIMum4alHJq86xodeItL1FSdWxLh/phET129iSgX/jPVT7pqaTWRYtPx9yMhhL8sXFlXw1X7Vkfui8nD3TPVIe2T/Kz55ModFpOa9zH99/uBo0drIm9pPW6vnkxg3khGWS6TruM5Yxmr6cLM1zlOX9CHFpFg7teWT7upjKshBIGmiNNaDXKFx++eXo9BspKBihb3QJTz+whaQ1yJRBwxc703S01XHQWsdTVf/FU7o5tEXyWGc+jN3ox/v7XjxN/Wy0xkhIRRArpE+pplRnxizH6JEN6PKLyFnxEYp/o2XQcy2uQ3mMW0oozRmhZlkrVbUjLFpUgi2Wx5hlgm1VaaJmMy9dcB55fX9BwkLAEmTDR4uoL6vivLFhjEmBCcMIc5efjXfvXzH99etEFi7Cl13F+RgwI/LgHD2KU+STa+cTDnezyOQnYNEQUtqI6o20CwlGUk8hnuukMnsvsk5g4aOH+M3G+9Dp7ejjXqpR+Mi6n1Pd9hOunzqHl0mQEFKkilr41s0pvnf1QnaGY3xKjOLpPSpMytBeFEWH3+nHqwGbUQclFuJThwnuGEdJyvRcpy6cnrtzAwdEdUHX9m17WHTR5VRaFtJkbaeyYu6s62Ve9jxEQWSbP0kxInUhGd38LFrbD6MrsZAcDXHguWHGUzLGtExZQS2KIjPZ30tWoYlUXBXznQNe5psNzImq158mNw99VRWJITX6TnvifCKqI4cQseIruariK9y2/DZqqtT6+VfbUFVZVQwFhk76+g8lQ9inP/450QCBV0XuNYVWDNo3buRWX2yj6zUi9yOrU1+JIAhcWF/Izj73LK/eE07wjzYHNywrw6ib/bp6rciCEtuxkXvMB898GYKON5znyTBwyIXeqKG8LueUjvtWc0bF/UxG7p3OIApgtOvZH4hQoNNyVa6FQt9BBqK5KAVVfOjufXzivia++eghLnZt5s6Xfs03HnOTsCxGQaY938/eygL06RQ/+9//Rm9ZgaL3c43xQn7hnUfcq6O+rpOFiYcwpSLE8rV06esRUwKXFrjY1v8zRkfvpMNfgGOwgaTVQlQUuSocRVr4ZbLHPewZvwlJLkYfW8dLk2cREOx8Ivww6Rdu4yHPYbq0sMfgQkxZSQsaYoYaFCBg1WO96ELKzlK3hNs5sJvUvtW4KUA/GSSesFBd+CIu9xewmYNIujLCYh83Km3ETQb6zppL75wEG9eGGEyNcmNoKw1DLuJGF1Nmkc5Ymr+2JGjiLG4d3snT4jg3oqfHoDCkk8kLhqgx/J69+65E7/hvACLpIcJ5OjyyGeclenSiD2+zmXxTLwNXFfDoXjs2eyk5gT7myAaEDjOJHh/1iy5m5Zw8tmoUzJML6Z74JovM3+E3N+YxJEtsGnChTJezSt27SSo1SJ3PES1Vk3LZSxYjdTwNcYnwHgf7lGwK0hEezb6Ee849D4CsZVew5pz3oouJbMreTnXW7PYIRq2RSnsNfckszvfL6IvN9DmHePLJJ5nICpIcCzPe7WcipYAoYAvaQRAY7+4gp8hMdHrLOaczwrWF2Uhe9RuYNi8XfXUV6QkHciyG5IkRMYZRnL9A1mSzK90IgKjXINp0s2rd0+kQyzX9hOKThJOzG5CB6mHHe30zv5tXEkwGsU8fz07FiaXjxNJqTqDLGXpDS+YI9cV2RrxRIomjawVkWcEbOX7kDqo1E0tJ7H1Fz5jHmsdIScoxlswRGsuyaBsPIL/yvbzwXdh/N3RvOqG5ngiyrDDU6mZOYx4a7du79da/beR+0BFAKjFRaNSjALUWA9rh7RhIMm6y8/hnz+fd81v44PCHeHTHD7ht+7MkFYXfXCMyXn0Bylw77TX1hIx60kvWUzHp4DsP7kWURLSWQzQePosHE3cwnFjCAv8LyKKAqSRFIKeKXF0SRdgOrgfpi4mMv2iFZJyJ4gAmWeFTBefxhapzGaqoYd1z97Dx65/h009sImIr5DHlSixiDMvaEHuLF5IXD9JktNOnnUSrKDgNWaApIVsKkC5ega5SFamsiQhxjYAiiujcZva1Xk5Oye1IUhTzPCdJ43zS6X52DVnI7WsDQaDYuIKGQAOFgUJeCnjYKxYTyu5EiuuoUzp4Hxv4Bn+kSNlMgVxABRruqzFgn0rypZI/4HQ+TEXFR7mm4csAmKZMGPU1AOzf90NGtpSgMaapWNDFZF8Zl6V07LcVkhUYREgqbBnycNFFViLry7hxTRUPp5OIsp4a6QeEIz0YfR+gwhrk2VSclCOCHIuhCbbhlcoRAmOIDaow5i5diuwfJqjzE9g2xq5+D8vsaXYvLgG9CBpoG9LheGaQoDGKo9iPWXdsbbM9Zy2SoOPcwSjG+jy80wI9JrshLaNRFPRZBox1OSQ7/ORXzJnx3UOeOOhEcsIS1xXmIHnUczV5eRim++wkBgZJ++I8H9rMQouWvKk4raLEZfu7+fWQk6EiI2nv0Vp5t3szWbEmVlvTDAePbeo1dWiEe++7F8f2Y3e4CiaD2CUJtEayp0spA4kA/mgSRyD+mpUyr6au2IaiQM/k0ejdF00iK0cXML2ac+blYdSJvNyprtCVZTWRurIqh/lFx3/dReVZhBJpho4kv4d3wYF71X9PdpzQXE8E50CAWCj1trdk4N+4K2TPVBip3MLwdE+P7nCc2L6/kZA0JOdWkWMx8N6OFyj8G+hMQdo/PI8vfmYe7TVLMYdhaTjFpZb15M1by8HGUv5y7ZWc1dPJp54VMZgOMlB3C15Lkq8V5BKcMGEpSODMmw+CSDJ/kLbKKFFFz+GWy8n1Gugv6WDSGOTzvgD3SO8npIHiz/8n2e9+N7YvfZati4pIZuVxyCjyY827mWtxcovuBT6rHaU2OMluZS6FsgimKc4puIwb8y8h3m/F9cdBNIXzaYyeS9CkvteCWAqty8WCyT40kkK+2Y+kq0YS4wxr/VzSEGRx10uYoylqAjUs8yzDqzFjj+aAXM/Gc1ayfu4odQwxqCymlFHWkYNbSfNCqZ4VhhepWDRIUepC5td8m7qicylX0ph8XuyGYjQKdLg8CAhYyyJYLCHyKr28W5LYYM0hK6hWf+zxxwhoBV70BLl4QRETBpFJk4i+Zw7nrH6JvLzzWFWymTZkeg5PEt+6DYEUgxG1/E5Oufnrf3wJpVzd6WnIsZ2uaIJALIUStzKem8/c0W5kiw5nrowhkKAnGWO+pf6410xY34BGTrHSLWFckDsj7kNeNZcgagSKquyYlxQgBZPUVK7A0dtFVqERRYGAVWRODGotRtJe1fLzaM0zTdQi7d0gw7h2itsvuJ0LMZEzHEEjCPxs0MkN8+CqCpnv942zzx/GH1RbYKy2pBk8TsVM24FWHBo/e3bsPiZ6DyaC2NJJKF9JznTPG1/cR8cJJlOPsKBYfV73K6wZz/R6hNeK3I06DWvm5fNyt7qBx+4BD0OeKB9YNTtqT7tcuP/wB1KTU5xVpiauD48HIJ2EjbdBViWULIbJU1fHMXjIhagVmNOQd8rGPFP8W4p7WpJx++Jg13EkF+5PJhD7/8FAOJfSxkVI6RiaHRNIVdl0fGItD6w4H22yiyUBNRq05BnYb9zKX0oe4delD7JpmcB9V97A+sNxLjkYxK/cz92V+/Gm3MhBEWtZjLX6FgyecRTLYcr1Co8GPstj59zK9o/cSod1mAWJJPXhedxZVMjNFhtLrzuXkh/+gLJPfx6rYAO9EZNWxGC9iF3SMr6t/RtX6fL4L/tcYloDz6eWEENBMWmQFQlXwo8kKxhXfpoidz5jhSWIskRWNESOd4To3kfJCqQokEcpiKofUql6CfPe9Vn2L/VzyQsvUuOL8HzZ8+San0EfbERrTzAlFGMc7cOl1LFVqEVSKlmsGPm7MYJWSfLukgdINdvJ+nsFrj+3IsfTrBkbAsCUa2a+ICKk1VXJSlUpwWg2ZXXDDOptHLbkYoq70CARSKgR5UseP0adhqsXl/BQMkbKGSE9EccfbGN1SRMCMk8cdpBq3qr+LcenFyf1HGRqqB+Hy4lisyFPtLPPporcRGkeoixx/b6HsJvCOCWBoA4m/WZqX7oU18hsH1lRFPrT+dT5/ej0oK+w4fOpXr/H72VKjpJIK+RXWDEuyEPQi5SIVSRjMQTBR8AkMmERKI5M20duD4rVxupfbKNfpwpXyy7VXrh82TVUZ1WzuCyL0u527q2dw6FzG/ieZKI8LHHnmJtrD/bxrokLuJePk6vTMOndfcx13u9Uo/nu5CihttkJzFAyhD0Vh8IFZGvVxKkv4aPLob7vExX38hwTZr1mlu9+pK/Ma0XuABcuKGTUE2PHy8M8sHuYbLOOKxpnJ1KlYBDXb35L6MUXmF9kxaAV1cVMO38D7m646nYoXwlTnXAKauAVRWHgkIvyulz0Ju0bn/Avzr+l5z7qiyGZNCjTVQyfKM/nnMAhjFKEgXQ2JXNW4Nr8IFoPGFafR+9+F4cSVgTS1LvKMBf083ziWcyth7hqZwmL3N/lxgOXcM/VN9I9t5H3b5WRlT5MZj9ru9UocHvZEqoZ44qs7SwrjTHgFTlgXIwtEaMjuoukoPAtt4/tyjLmhXx8a1kVyfEw/qf7cdyxn7l5F6BRRD7ruYHzXcV8NvUpwoodq/7HhIRubh7YyX60DEnZ9IrDPDv1NC9Ft9EVlxF1NooUgb6KCrJjIbR6ieicxdjCvdgDaQRjkgudvWhlLX02B46cVews1+MoSbL45RdYNuyjL3kWCCLzEjms8R/EnEzRmmPBWnMebvkGZFI8Ot/EYrEZ8wE9oy2NKNpVJAeDRJqGqdv8AgDWD11DI1qyky5kRJ6N3kjz0GqsNh9P6ifRKWlkJY0t7iQ3ICPIMV5ye4ikEtywrJxNUgJJIzBw+HfIaR9mfZCGvG42eQJo421EFDuCK0pSo+H9v/oDGq2WycF+jHV1ZPv97JDj1CDSW6Nn/kQnhWmZNf5ulJjM/zUmeGThb9AKOh7/eTMdOydmrpnOSBx3WuRyp46p0jCCKODz+SguLgagV6MKfX65FVGvwbgwD/2UFhEROe2no1KP16ZBDKSQJZm010vUrG7Bt7l3Eqkgh1i/ukHIeWetB2CNZpDvxPv56R/vJxlOcUt2Nnc0x2hZMI8/LqykVunkeeH/s3eeYZLc1bn/Veicu6e7J4edmd3Zmdmco1ZpFZCQkISQkAgG2xcZECbZYGwDDoAB22AyNsaIqARCKIdV2iRtnA2zuzM7OXbOucL9UKsNSMIEBy7c86Wfp6anq6q76v2fes973nMVe/T1SLm9F1zjxWyBuWqCRmeIiqBw+MkXzzYBqZpKrpbDXS2DI4jPY9QmMpUMJ+ay1DlfaTvwWiGKAovqXZw8TzETP9OdGnyNzB3g4kUhWhWRI/eOcnogxo0rm19RSLV0dmLu7CT3xJOYJJHeRjexiePw/Oeg93pYuB1CvVDJvKZ1868SydkC2XiZBct/8azb/1fi95JzPzCbRvMbF54HlU90hHlneid5ycb9S67G5eonfc/9aDadtG8xkb5uxPJxmpKt1CKnSI08iHzgRVw2Bcm3kQ1DHsRKAUu1wuOrVjHcaOb6XXHebBbon95J0WNmwLGWh+xBlpsjeMc14tHN5Bxubnz4S9izj3NjrsCIazMj9maunDyB+qMhol86RGHfPKV8jtPSPPZKkR8XP8M76h4gjYs7Oz7ItGhHXfMfrA8+Qk9ynBdrbcxIJbKWNqT8GPNSiZyqEW5by3BrO75CHsk/yeVr7sMsqewtLAfgD8PDBMoBZm1jHBo4wawsEVubx2RSePd9sP7QUtB1VpZd3Db/MHnJSrk9jb/HS03ZilXcQTLoYOHscdzfUdno2oYqQFWqkrp3Bx1T4wBM9Xex0KTSWpqgYG7k4LwdTdxGKu9np2KjqzxGwmXDnjhBOK3SrxxFESz84QufY1mLk4DfxiFPmojlHk6VnBzJS2xofIkIoAknmCBEUyxByR3AXdeEp34DMyensff2Yi2UOFVQCVhlMhYTfccO47V0sTLZggDcb3fgrU+z/r31NHR5eOa7J3nq28eZHU7zWMR4GtgekTnmHUFRFDKZDI3BNkTVTMxmJCj+oNEYZl8egopO2NZBOZfgZLsF0Sqhn3GHVBMJsmaD1z8wPs8pV576jA4mEdFlSBT1iSyDpSsIJ+K87ksvcChn6Pnt2RpXuAu8V/8HXKLKAWEtYX0KRTnXjHXqwHF0QefitVvxO7wcy5ymOmEAcL5mFF/dmgaOOjyBhYBBy7xsO/CrxMuKmZcXj8TZzP21wb3Ra2OZzfiunArc+hqFVNf2yynu24eSTLKk0c2t0S+gyxa4yijSE+4zXv8LqJnRwzEQoH3peeBeiP+XPBX8b8TvJS2zayqF5jcjahq+yRF++Jcf4NK5p9lr7uWRrjfwzKyItneM6lI3Rw6+wJTWxLXPDnP5XgG1chRvy3IC61yseOMwK67+GZG1P+TH62R6xk9zeFEvn779DUQ9cOVXD9E7BeNNC8gIJSZ7RNIumSUTaU5aV2ItFTjdO4VD03hfKsXnO/6Ap/o3EysWmTx5GufmEOEPLWdn4gFqos7SffspFaYp55Zit2R4qnUTFy/5Nz525E+Z2BrgzuQPUHWRx9UW7K56LFoVU+0hDhU1yg4PGaeP+kKcJR27CZYNTvGuBe8GTUBR99NdbSVtSXLo6El0AZodTsLbL8e05CbKcghHcQ5z4t+5bHwnjwS2YnOnmdm7GxETPvkBtmQP4H0yQtZqxTJ9lLu0b3NT1wc54szRWhcg4gtwTNExZ/fjVIuU7D1c01/Pre1dPDV0JTXNhNAwR9pupS4xhKjDF5uvR0TnxazCR57/CJe3WxmvvxtdUHHt2kTghWZW+odolGK4xChpawcIFqa7X89dH9tDsbCGZHQjP5tdw8PL/wQNgUijTqCisS1hwqd10GI37AL0ooruu5FWn4lr71xO92qNgcc+xv2ffZrvH5qhO6vir2ociUWZHjNMszKTKlbVT1qPIws65jNZq7XLi2CTaXf3Mz0/x7RXIlwzSMBMrIiSTJI8U7QdmIsx5xdwZPLIfutZL5PIjGE4ti1kpaPOwfsfPwFANV4ilzuOiMZal8SouASzoBGJnlONDJ08hVU30b6imzUb1hIVs4w+YXD0L5uGuTQNHEE8IQMgk9kZhiL5XwPc3aSLNaI5A9Tj+QqSKOC1vfpowZejWzL+vtBlpyvkfNX3uLdvB00j9/TTXMNz/8mk6AAAIABJREFUrBeOEVv3UXAZT0yEFhuv0d8c3McG4tR3eHB4jEUpPzOI9vkeCj/90P+TAP97Ce5H53NofgvufJYP3P9DXNmTmGpZMiMVJE3l4e/fjVDTKTT3ktTibH18B/6sSNW9Bpv/jyhlLsY5fTst+/4cGZFtHc9xp/pXLJs4wXhjC/0dF/Opm80ouoaoQ6KxjmpLjUVOlf+wNVFTJe5IfJ3G+X/ilD3Nh5JpMvpq/vKoH10y8cDyrTyg7WfuIzcxctV2ZhUVQalx6i2ruGd1C1qlAadtgLCmo/usJJob+YdD72dH3RLefPoJpjQfabcXFZEhuURKUdmNoQXurCb463krdQUL1eBiBhzNqHI3GbfOFXYruqATVWa5JX4lC9NfoMB1jHTXMx9owxlQKL9wkJmH/CQOOUilfWyLrucAZSpSnBtmdmItlynUyygzOznlnqQmqny6816kUoH5+kYOp3IkI/vQEJhxtPMX6xbgH9fYn+yjyTHHG/p3sr/DhedMY87uL+yiNV3EJmzgyYknOT37Afqa9mAa38rS2TbWP5smPNDPTf4nAIim+tiz7m+I2FfQvMjHkm0qtcITNLaKnHD5kHQYaq/j0ukySzzrydmCtAgGHRBOn2KPsI0njn0eXa9gd84BCo2bdGb9MltjKklVp/PoNn78JYMGSYzV6OrqQtFrWCx5atNGVizIIvaldTTZuhibNhaCxlkD/DLREmo8Tlw2wD1TcbJ89dVQKSJZz3m+R6IGZ13J1Lj3XRu4Yl0zVXQeeGaU+fhhBF1k6d59JHU3p2oBJqaNLlZN0xiLTdFqDmFyWVi+agWyKDEwOUgtUiBbM8DdfQbc5dBi3KrKbGyEqqL90kqZl+Nlq4CXO1sT+Sp+h/kVc2nPD13XkXJ50r4jLHC+NnBaenowtbSQe/RhVp78PAe0bnZ5rzn3BqvHKKz+hoqZbKJEbDJHx3mUTOnEk4h6Dcfhf4PdX/qNPv9/I34vOffJQgXMEpe9tIslQyfZ3uukqknMyC5USeaq3TsYbW7meNKEhsgTG1p5dEMJt7SFLFZUl8p6s5uxVJXGH1yOf+QaOkMZmrYMogsCp4tOphuX85lbrBzt76PSVOT1rQ8xXvDga34Hbw8u5911AmVxiBszLm7IFRArb6fY5OBnq7pxyPDvl76eb992NcneBVQ8fqqOIqu8f0R4/ipApRTYxbu7jOxFXeCktcHCfd5reZvpcRrVFI8qdUzaOhCiVfzJQZ4LGgWircmFSDUr9vlDPG1fiqDDSGYVeadMZ2Y3ADn7PG+JXcuInubRzCM8mT+FWbPxaNMR9GsKmNo1tux8ib5vLsFS9fJDXWWHYzWXZPaQ8wTIuc3oxQIL8iqBnBUVheLEaUrNzRyIJtB1lbwtxIjJzOy+CCOTOeKai17bJB2OKGLbNkxKAV1NU9WgbQoSrhC3HfsMVzbLVFUTz4ysw3L4AayuAP70zWwzH6amS+worcabGebSS+Gqdy1h8YYu1OoxZEeUOTWFVyqgmUT653YTsVTZbz8JegEHYI8nMVPh30sbGRr+W2aHjEx5v1RBF+CSSI3Khgr3Lv0sdQabRWNLmE1XrgQdVEeG6tS5wqK1N4AkyJiTKj2ahDVZQzaLpOfzqJkMMdkB6KiYaFpoNFPpqqGiqVVUkjkHTeajZLOGO+LfvWEpmsuMJ5Fh9oUfIk3r9N5/HwCP15ZRyh+lUBhhemqaslals6EdAJvNRl9vHyPSPIlnxs9m7m5VA3sd1C3Cp2nEMkaN4dehZeCcYua1ulPPj0y0hFJRUEw5EuUDVKuvdPxUUmWiXx3AcfGNFF58CfJ5Pqn/MUdmfq5pKtz7G9MyYwOG/fOCZeckkIHoHqb0ECf8l8KTfwVH7/uN9vE/Hb93nHtN1SiajYzidUeeBEFHjjzLaN6HtznNhtG9dE2M8/S69SRzCYbalhLxjdMbM4pcfZ0ubpCsPOXZy/zg16nVhggcvZiWp99HUz6KoKuEzM9Qb27lREOJ4TUCdX2nydcsjLgu4WvJ73LSG6WRRh6ZmuHjiUFG5D7esLWHDTf30l3n4tHVi/EXc9y17k38Y/9iECWu3vp69u09xFylDad1CswZFpsnWOEyeMu53jq2pPYQ6a7jrdEdKILAfv9aHEqaculp5n0CkqbSn/Py/vE7MGsK9zj7kUey/OyEsUiELTPU1RxErDE+7f0p79fLfNa5kWFxOwBOOUKvJUXkkibu+NjfQ+flaIUY4twAj4c249VTWMMW5nUXkl9i3YEsm31r+eDQddjKGhPuKrGUIR+sBNzMCTq1o1F+Rg0RnYaMFbViRV2YpGaWaSwex2QW+YPkwyAIlNfVCPvnyBy5nm0vPIleyWHqeRu67qU5V2FYaGKIOEuPfZPOjYZdQKC5Fdls5uCh00x4GijXO2gpRzCpP+VFeQhdgGk1QrMGzkInm6XTHBFW8PjsIEXNUKDsxUI9IgtzGoGlLSQcM+QdUUwmE2/80AbMogVZcVKwpalOneOeZZ8xQcld0rnCadAODq+F9KwBTjGzm4BgZPrDmgGQWtHQfscmczSZjnK9/6+x6CnIx6jNzWHNzrCskMRcX2Aq18SC2Sk8qsJx+tERmZu7j5OHBxF0ga7eRWev+zXr11ITVI4cP0o6bfwGL3PueJrx6ALZShKTJNAZfHWK5BWRj8Ldt+NVEtS7rWcVM6/VnXp+zI9lkFUbLeaVlLUsDz744CtcH5VYidpUDkeHF1Sdgv0azI39r7T/DfdBYhiU/3z832vF2EAMf6PjrBcQqoI4sYujlhX8s/OD0LoRHrgDxl74tffxPx2/d7TM7vkMmteMXFNoTs1jD1YxSRpD2SCupiJv3X8vmgztTYcw16qcWNCGyhTB0jLcDpkV8SoPep/jC+G7aJqz8xXftcRO3I+dFTh33k59fpaYGObP7D9E0gUmGocZIcXnIiZ+NvE4jbMSyfDfIyXew8HqOlQE3h2+gkX5ORwloyDW6nHz9+YqrckoO5ddTdJqw1yqZ1CepogZwbsHCXhu6hm+3teOqENGFlCXdSGVVLYEDrJanmbe7OWEZQmxoJ2k00Egl+NFrcpmpYOqHuKUvZMjW3r5Rr4fQTWR8trpqVRJWpLYazLXxz/L2ya+T7eqUpbKXJqbNrp6V7fR4tVwuVpIRga4/eRjHLSuQtNFNvrT1FSJmc4KXXNwQ+NWVtuMYtkpW4SOScMTPdNkbBvSFQ7pc7xL2sEN0oOsPzDHp09+DZeziD87QlV30Zd6nIAEw+E4Vmsb6YlRQvGjpBZfxX2dJ3io7kVyZIk4rJyyB5m3+5EbDFmdKElYHA2MCQZwJNuCrCnuIVHuoiQanPakXKMxO0NKs/LO6RgtVhN3i39M/YZp6le2cTrcwpa0iuy30trRiUk0kUgm8Pl8CIJAfDqPqeIjpaYo50uoaQNkJI8BcF7dzLUBAzQsNvnsRKaE2Y3bMg3o7EvqIMpoaYM+i4xl8cmGft4qZol89tOMXHkV1cmTUO9Ed+nEGi9F1HX6UgnKln5SUjNz8z9m+PRJwroHT/e5LLSpqYn6YJgTwjTRQUMi6UI0aA1BwCfZKGh5ukIuzL9sZ+a+f4MTP4OTD9HT4DoP3P/zzD0ymsVslejt78GRb+fYsWPs3r37gvcoZ74n+9xXkB2QnbKxpNnD8dksyvnzaEO9oCkQH/rljvvnopyvMTucoWPZeYXU+QGoZIn41zIYq8At3wdfB/zotv/Spqn/zvi9A/enxxNofgveVBopC57+AooqMJHzsjydZPGLESpLVTyny2iiGbs+jK3qojnlpkHVeCo8zNfq76YnAj9cdAMPBTy8fcm1fFWdp8vaQ9tkkjG9i0KqmV57jT2ayt0pC52VPJ96WEeqvQnxqI3DcYkvam9lm/BXDE2ton3oJF//+tc5evQoAP1HBrj82IuYlBqDTZ3s2PU4o5ofAZ11linQdXZM7aDVaubGM4W5Z3qWkcBMr3uM5eosrbU4u4OrSXtCJO0u/LFJJubvR0RjRvsgHziSo/AfJxAUCYfay3ydk3WVKEVTEVkXWBn3YBNKLHF5KFqSbNFGOax1853JS7h2uoAKfMfmoCM7zxW7jpGxLGelbnRDDjTaKZkh+Oh+HF7jRgxUZLrGT1Bym+hadBH94gQXmd/DU7b38memb9HNOHNVFx/u/gAnmtvwzZ8gqN1N0DPHX878OweVDjqkt7Hp2aMcaXXxkat28Z3Qg3wzdBfXN9XzZ8Ey1rZv8oVrfTw8/gij6VFmRpKUi34mrS7MooLZorGxtJO8uRmfLGEzOUhSIxw5xTwabSe7+WhbPWN6A7u1rcTXVqmZLKxIHkbrjaKrWbq8nZSzZXw+w3skPpXHqvjRdZ05MXWWmhEtMiVRwya5CMklBFFAlARyGRVNEElbXawfmcAlVBg4MozoDFHY8xzRf/xHpp4dICAafjNeaY7Zn+7BtX07/tveQNlpyP5u2ridjNlB1/g4ihxgd6WNajWOajpKmxxGOjN7FQxPlzXr15IS80xOjgPgMHu44v4rGc+M47X6KAq1C8bq/cJQa3DgTIfo9D4W1bs4Hc1RUzUS+SoBx3+euYfa3Tj9VmyFFhZ29fDUU08xMjJy9j21eAlBVpAyA7gu3UZh126W+U2UaiojsfM8+M8qZn490B0/Gkf/ee/2UaNnQmnbzHSqRFF2w+33gckG37/JcB/9LY/faXCfnp7mwQcfRFHO+V7simXBJLJy+AhCDdz+MlMFL65cDdMTMnpRJb9eIz1vQZY7aSo9y7LYGkAgV9rPwbHvggDLTojsauhhVeQULeU4P5Ds3CoWac54KQlWXpi6Dou+Bb/Jg6d2Hc36+/inxR9iX6UHU6rKH1ULjG1sYWTlFiQF4o2bCQaD3H///dz7jW+Su+u79Co1Fs9NcLxxAXOmKhN6HToC17dsQRUEosUog8lB3t3dgBApogNP9l6OAPS1hVlnm+Li2UPUfHXkbQ5COR+6mmIgsQtTrY/OjJn5JgOInqvEqJnL9CkG95myJhkOdeMyu8mnNEJSDB9ZXrRdyvMDEv3jjQwLUSrWAYZDTVy56wEq7dtxZUex21Xmam4GF0Ph0cepDO0HQWJztY2m+UmOtzZge+7j/JPpqziEHF+svYEP+jr4PP+H+zI38t3G61A6q5hzWZLJEeJpiTcOfZfmdIz439xNWdY59Y53kjijKvlQoZtPxhKsM4PNlGe0fYaPvvBRrvvpdVz7/HZyYTOTlkZqdTa2Ht5HbqoJEFjS2YbfX4cqFfFqoCMQqbm4dLhAWzHDPbyFF4VlWPQyDR3/wEn7nezcuY532gcwVwQU5SVODX2SyEScYKAek8nEjJykOpmjoKh8bTJKzKRjk13kUzHcdVZURUPToGLxkbY46Z+axC8UGZccCI4QSnSexH98h+hsBZ9mTO7yydN4bttK0+c+i6U9RNk9AQg01C0h5/DQNWiA2vPlegTBS339abpaFrxiglB/fz9mk5lJMYKsQ9VkZrYwy/7IfpzWOnIiLA3+kha3px6B/Dw4gjD1Eovr3dRUncHZLKWaSt0v0MnXKiqJmQL1Czw4fRYEBDavvpRgMMi99957tvNXmU8ja2MIS2/G/cZ3oFer9E4aip8Lxu4FukAy/9qKmdHDMZw+C8HW8xa2sech1EtLi9EDcDqaB28r3HYvlLPw/TdC+X9nyNAvG7/TBdXBwUEOHjzIrl27zm4bqxjg9frBJ7AHq4gyHMuGCeSL5Mbs1LwycUs9iiogWjo46qzSE1+PW0zTX/8Vsn4jY9DTfZQlEzeOPs821xRvK1ZpEFM8lJMx74pyGh9taS+nGr7MSPD1/DDRxVgliBqw8tawE/fcvawdnOedw8f40w0+njiZoH7NVWxes4bjszM8ec3rsAecrH3xcQRgn7Ofig6dQQevW/dWGmoGpbBjcgeL6l3UjxVxlEscCxrSsI6wA4es0N2QJ+80Llqx4kb23Y7X9ACpyjxOxcapoZ3sr+wmlbIjCJC3h3EXJApkydU10NixDq06jTu/m/uneskdHeLDiRfxYWE+uosF6TQ7exvx5KOoSYOrXdCoImdt5JYWEYJ+8jueBpOZuclBRF1nuL2PauMAncIUfy5ey/16Pc/bVNB0Dixcglmp4W00CotWSeZQOEBNFvji9/8O08gYX32dyJu3X44oGT4rC1LDXFNReYOnwHViA7lTn+Qj3V/jhsIfsSiyjq51WynKDqpBB5uOHiBS6cCcjFDf0kpjSz2KXEJ2GVn4vDBMfscEl+97lrTVyw59M83xKs07/4KlfV9n4cKPk5U2omsyJkua2dm7iUzM4gzEaG9vZ9KU4nPlLCv3DPLJkVlKThN2yUU2FsMXtlMpGolG0RYkbXbSlI0RNNeICWaEcAsIAi3P7KJi9eOzGyobnzxDRTe6dSW/lYprAqvUiiw7UH0BmodP4RBqxMVmsule/IEZfF3nsvaXw2KxsGz5MqJSGrcGCUGgYl3GcOo0uhimLIostpzLSNORee79248xd/pVhmHv+xZ4WmD9n0BqjEVu47wOTBjNXL8oc49OZNE1nXCHG9eZp4tKXuOWW24B4Ec/+hHVahUlVsTENKx6G7aVK5ECAWx7n8dhljh6/hxWyQR1i36tomqtqjI1mKRjWfDcYqhUYHIvdGylK2TcO0ORM8ZsDUvhTXcZHbJ3325YIfyWxu90QfXlReP5558nFouRV1RKJgGppLAoNYqzoYyqC4zm/QQzRXRNp7S2QnmoAV0wUW1VEBUT5lKIUEeMJjGFOZxiYQxeqltLuJgktrSFVRtW84HwZ7lfupP/Y04jonMyHuTBkVXYnpzGtjtCIJFhSaMZcamPt1/URFUrsWF4lo+mP8kd7t0safLw8QcHCT34KJe88ALoNUb37sQtCHRH5piuGQZn77t0IUJdNzecqR09NvYY+VqejS1e/vpbX2TcdmbEW2QUs2gi4/Yyf6YpZq5cxVqz0ezx49/UhFWy06iGGZl9geDjEpoiMK9YueG5ZlYeyOMcPcqpU09Szd/DbLLEjOIg47bQ37KdkpTlnzbvYKilQDCdZC7QRvH+n6D5e+m1z+DNmegRqhzueTNVk5OKVkXTNGoWC9W6Lm7P5fhHb4h97S+Q6niev30+jDubY7B9IQ3pOEM2Q44i2MxYV+cZjXgRjqvMLa+jtK6PVDUBYg1dNdOmxakEezHFRDZPDGAWVe77SYrm4eV8bMNHybuM9nqPs0Yt4MKklDEn5qhJJuobQiBoqG5jOlRMOIhe0bk44qKjbMx/t1ZP8da8l3uONOGtuxW351YAbK3Xs6z3UZSSh3lhN7uEBHm1wH22PFu8Th5e2c2KtjrssotsPIo3bCd/ho8v2OspyBbM5hIdXhM6AslQIygKkf3DgI5VyqNLZhxSinyyCLqO7LdSdk9g1wwDNnM4hLOQZrFVoWbpZeh0GEHQyXhefTb96tWrqYpVnKpGTAmQDX2IvdkyWT0MgF89ffa9kdHTTB4bQBR/zvo3fhrGnoNVb4PWDQB0Vo4ji8JZz/VflLlHxgy1Tn2HB4f3jKY8VcHv93PTTTcRi8V44Cc/QcmDLM6Asx5BknBddhmFF15gWdjGkZ/3dg/3/lq0zNRgEqWmXSCBZHofKCXouIj2gB2zJDIcPU+h03kJXPcVI7v/6btB0175wb8F8TtNy2SzWUKhECaTiZ/97GfsS+fQXSZsmQIWRcMerjJVq0MRJTxKGQEoblKJz1WR5AWMeA/z9tlbEHWBB6wP8/b6MCd0C+942M5AsJN+OY7WGGBb5Eu41SGeVT+KJoyzoBusC13IFQVdE7h8Yh9fC1o41VPHNk2nVLQCJgINFUYctxLZvYdPXdNLtljhc8VGGm66AXl2DHMgRCXYzNqjAsQrOFxw9ZJ6EASuCywDHSZzk2z84UYGtQ+zp/MY7ZM/YIfDx3HlNB0LzhhSuUQEXWeq04Qs5DhQvp76N6xH8lrpcq3glrf/Pb03vp1sOoCpu0h20RyHepJUAo0IjuXYPJdyR/cejq+LML3Ugrfq5gnvS5QrDezuXE5NVhloC1CbmyOd6KKpNoNdUmjMmNjs+RYmtUQy6DXASTNxx8z9eFWdH525sXvjRdr2z5Cz1ZO2O3BUynyp43Y0q06feRgxBzxloeKzsrX7KG+iiz2zexAFCUehgVa1iH3hFYgzEsFdNVaGBzhhUrjxY6vov6iZp4+No9kllsbHSPgD1E+PIWgasVyeujrjphZlL45qkXHC1ExHcLiXcqv2DVbre3mP/3uEtSSfe3qMjZ/Zwd4jBkDP6XPsGTOA71u+G9np6QXgo6OP82Wvm1UeB5LXglVykI0a4K4pOhIKGWcDDipU/VYWho0nnsk6owicOnQKh5SkpncTqX2TqtaNpiiQj6BKORRbAlvR+G3dTQ34yjk6kdFkP7NaGDHdQbTw01edORoOhxHtIm5NYd7cDsBEscxMyeCba7lzDpKxiVFESSLQ/HPdowe+DaIMK94KjctBlDHP7qMz6GT4zJyEuleZwvRyzI9m8IRsWJ0mLHYZ2SKRTxlWxl1dXVx22WUMnjjBEWkCWZgFpzG9ybX9cvRikctyowz+fFE13Ae5WSgmX22Xrxljh2NY7DKN3d7zNj4PgghtG5ElkQVBB8ORn7NUXnYLXPKXcPQeGHr0V9rn/1T8ToN7JpOhvr6eK664gsnJSe5/8RDIIvWzswh5sHprxCseKgE7giBQq9PIlO3UVBXd4+fm5CVcXVyJbFaY00Qs6WX8+T0qL7pWowsif+78Fu9xPIwUOYpw811o69dQE2qsSYyT7nDziehBvvfY3/DXC1s4ZQ2RNQm8ua+d3fePIltDzJ4+zQvjl/PA5Lt5/h8OszlT5YWmZfzLsTlMVge3/sVnaCpto2axI+hQ7XZTO3NuDe0Xs65cImDxcseyO1iYq3KyWWBO3sn7Qi4+5zzOd8r3kDKnmHc3oAsCV87to8/2FJHSYv7poRPUvXMJokXCNKYzly1Q07vxWMuIDVUGFuRwBGRMlq10BhTswWbm7R30FpsRBYGH3bupzN/AymU3c6g7g6ZmiK1YQuzxYVCgw5FkSOmgTh1F0FRm7RIIAmFXjT+cuY/v0U5NEBA1nZKgEA2uYK5rGQCjdfVoZSe0eJHnNJxftyJo8Mxl65h0NnLxgXt5avBp+v19bC4Zj9L3vWSHsQDynMhF7mnKmpnvDh4kV6mxP2FGD1hoiczirqWwz80jWKyMT06dBXdkhXApx6jaxFTyPp4JHKHPdoK/VI7jtk7ztsBdfKIzwZbuOg4Pz6Hp8J0DDr61x1Ce3La8kScvWorNppETpjlw+kZSqZeQPBYEQaQcy5yV2VmVDAV7CF81SyXooSvgQUblmNvoGi4OjdDinULR61GqdQhUEAUFoifI5Yzs1Jw2ZtPXdzQh6xrhmAF0894Q9dWrKZbGyGQOvOp9ITskPJrKSZcB6FndwmTCWKTSyXMFzejYCP6mFmTzeRRLrQSHvgc914ArbBQY65fA9D56GlxMnZlz+mrzU8FoXpofy1LfYTytC4KAy2ehkDonY9y4cSOLW7rZJ48w4qyCxaBGHGvXIno89J0+SEXRzi4kAJzpsiX6y2fvmqoxdjRO+5I6JOk8KBx9DhpXgM0A/K6Q8wJL47Ox7l3Ga/yVlsq/DfE7C+6appHL5fB4PCxfvpyOjg4mogaHuXloHyZJQxBhJm0im6pDVwSK63WyJ0IIukhvXRNd5Rb2FTWi1klWR/u47dFhWqPw0MIttEpp2uv9mNJjcPNd1Dq3M3B8Fy3M0Jkz9NHTa6+n48o3oas9/Dhcw6cpqI/MUC7U0LUAqhrj+CK42PUZ2mYf5rLkDOFahicdK8hxFXf/3TFKaYXdehWXUiRf5+SeKUMHTdtG3pLJkaik2Tu9kz99Zp6v/KvGBvGf+fC0wJvzKqNuD/tahona2mgpzrG+NEi//UlAZP8z0zwyk8L7+k6qkzlMYxVM3j5EAUw1o+HJLM8j6jKt6m5YdisLnJ1syS7nuO00k4VulnlKfKVnJSVXC0mXwkEZqtksUyNOOvwphqphahkDfFMWG4KkcUlwhqJo4zuNdQQyOjfthLEGgaZv/xXTDX6c5SKBYoorjuzFtnAVlmER97RK3GnldcPP8Z5Ff4EgJhhXRpGGnFxUSaICXy5WsY5VUet0NhSa8FnS/PtLM/Q9dBBFk6h3VHAoNbqtByiZZJwuDzMzM4iiiGyWUeUidaLApOriVMGCpfU5ylUnzfvfhKPQT2DFPOapA3z1tlVcv9hLRZKYm/HRMFrA7JK5s6eJsDNET88qsol2lJrCwUO3Mpe9BwAlXT4H7qU4ZWsd4XwKLRzAb3LjE0oMKCKSz4c6NUGjYxRFP6PeEFJYhQLETpLLGQVFc8SwMXY3Gdl+eWgGe6VI0tNIfd3VSJKD2bl7X/XeqAll3JpG3OzDqupogp+ZpAEF6dw5A67oxBihtguHlnD8J1BOw5p3ntvWvBZmDrAo5CBdMtIP/2tw7rlEmVK2Sv2Cc41SDq+F3HngLggCl7VtoNFeIbrmNKPjxncomEy4LrkE9+G9yJpyod49bDw1/SrUTGwqT6WgXEjJVPIwsx86tp7dtDDsMhQzVeXCD7C4wOKG7Cy/jfE7C+65nNFM4na7EQSBa665hll3AGe+wA3pHdjqjItwtuSma26ekgVyl6hkZpz0h66iv9LJfnmceFVHcY5y3XOHaY6U+eIVS0jKLi7q9KL/wWPwwVNM2Pr56le+QrFSYwOHEapXYKrVOOYzo7OGqEVhX9jB+rzI2ME4GjrxQD2iXuXTt/VhnqrROfQwB+VBLos8iiJbGVzRwfrrFxDaEiZaqbHMK9MzPsJXT0+j6jqE+7hIM/N5Zz+DyUHu3GrleE8LBydgvdDEh+NzFAPvZbSuUkuvAAAgAElEQVT5UyAI3BR9ikXVYdzSPKEWM2s0M3923xGGgmaUgMSaWieap5WqBmEZAkUX5azRNdlgPgHLbmGdtIyWaj3P+Y6Rj13B1saniU6k6Y1uZm9fHK1a5OiCDrKDDhbIaSp5lSHLWnSgKkt4A1WaxBN8ofNm4pYIN9o3saVqqBH2Vgc4aDHRkoyyKX8UZ6VE1ms0VyXqfEwHXFhmKkQsQf6mZTu6AEsrEXprJU6bTUQcEdSERq1e53F3F6saDpNNONBmi+gCLCzNEbQW8TTHKFjMBOxOdF1nanAfOKFiyuK1eIhIDnZ5l7IkeBzX1BpKT3yZJm5DMlfQbPuoVcoUMglsqFj67YQUkYr13Li4rq4uarqOe+AjNDe/hUjhAQCEoo7ZJmC2Sljz82hmDw25JGJjGI9mwycWOZ0pIza2YMlFqJPGUPUQok2m5mjAJcWozgyTzR3HrNdD3ISu6sghg7JIT0/RlE4w4fVhbQsTDr2OaPQRFOWVE5pytRxuTUOrirTnFczlJpSqsfCkykmolSikUxRSSUIdnRf+875vQd1CaN9yblvLWqgVWWw1KBG7WXrNEX3zYwYghzvO1dmcfutZWublEJI1lobn0TSRaMR/drvr8sshn2dDepQjM+cVVV0NYPP9SoqZcLubt39m04Xe7ZN7DM38BeBu0Gano6/8LnE3Qfa3Uxb5O6uWyWaNos3LxdqMzcmcp472TISK04W9rkpcsZLRBdZETjC4FEppG82Wfnqd/Tzq2UluzooglXjzU0NI8VG+fK3ISecmzIKGNnGAf/7iv/Dtex7k29/+Nvl0nBZmWfS6O7ju7dfQEE+x11VCM4t8w34KTZRo3Z1DQcf+uibe9a7LAZj4yX3UDs9T6JNorE0xb63HJMs8N5lktsHEfXnjPN59yxZuP7yXCcnEo7EMiBK0rueKmZP821yakizw+atipLTjVIM9SGisiIzRWDYy/ZBSZrEwwixhKvIUtqrOMpOFP/7eQQYCcRxYqTtlY6IqEqqD649+BKnYycXuL+Pt7ARfO74pE0WxxK5qM0GzTl/dcSZPTtOSXkzRYWcmKDLnFKnoZrKnLCwS5jhYaiXusoIgsNw0R01rYZdFRRfM3H7bZ7jorododjbzjVOPoYoCLZkEnbKVglzguMeB+5prSFy2lYzDTjFh5s1zj/GwK4hNgzvU/XRao4w4/bgt49gqVZ6t28I/tywhHJbRdRF5pghuE52JGbraB6mam6nKEn4EekwzLPzZtbTlT6HLJWy6A00QMXWqCOg0HCijzA9gGUtjk5cRXBrnyUfuJxqNokkyhYAHvyaQEM5lnR1nBm9MpRMsaPowmt1QV9lkF/lkHG/IhiM3C4JEfbmCpakZV8WCXyiSr+nk3PXYSxHc+iQq9Ug+C6q3G588TWY2Si53HKe8CDQdNVNBDhnZvVRN0piOk7HIjNXJNDbejKoWiQ5/4wLTK13XydYKuDUNV7aMrVKEkhddtSEAaVGE+DCxCUNjH2w7b5bs3ICR1a5+B5wvs2xeA8CimpE120yvDuxgNC/JZpFA07nh206fhWK2inoeh16L56mED5BNNTIzc85O2LFpI6LdzpXJExdm7oJgUDO/omLG4bUgm8873rHnDFlly/qzm16hmDk/3I3/H9xfLf471TIvLxhut/H49+NIEk0S8STT7AmvxxqsMlV24SulMStg2uSCU6tYFbic/fbjZCsyeVOQhcOPo0WP88DWVnYutpCotHLtilb+5I/fSWtrK6lUisULu6ghc5F3HmnV2wi1uVlisjLldXFX8gn2trRQnygQyqhselsP77y2h1B7OwgCE/fdS23ZEnZb2ql3q3zgEx+hp97IFN5/9wD7xpN4bSY2dNVx7ZJFNEXn+NLwlFEsa9sEyVGWl1L8KD5Lg1rG1fqvTGeNAs+/Dv41H5r4DwC0PLjkItmEndPFIUw2kZv9PpKFKt8YTxMPlOk46cc0sxJbIIdkjXHf0s/R7tiB0vcmjkwfpnMuzHPOASbiC3njSheioDNycA4RkTW1i9m5ZBJF1HlxUZjkKRddlgT1p08y43MjCDp9jjnGzO8gmt9J2b6RouBAEAQa/OtIZY8gqGVWoGEqmpizzzGSzRP69KfwdS+iaJLQNIFLhl5ArgxSs/Zg1qsI1Ry50GLqKpOYdJVBvZ13a9/nHSdW0uY+oxO3lFga7kAOniQ5e8aSN5FmuTOBgkRzbRYEHXvNAMEW7yzyvAnl2QMgSeSfeYzm1vci21Tmkj82rqu+XnpSKUQEpmrFs9ed3W6nIRBmWkqizlZx1fWgCQo2yUU2GsXnF3AUDHrQr4G9tQNSNZpEA9imRD+WahapGEchjOS1IoYX4ZaiZOJpSqVxnE6DglCSZeSgAe5Om8qijLGQPJGM4nYvx25qYPbkF2HqpbPHV1SKaOi4VY0Wkwi1FNWSjCCA2+QkLYkQO0V03JjsFGw/j5bZ9y2QbbDMUAtV1SrH4seouRrAEaIh/iKSKCD9AsOw+bEsoTY34nkct8tnBR0K6XOLZEbdh2IpIObbmZqaOrtdtFhwbttG39hhTs2kqSrnF1V7jcEdv4l6Zex5g2Yynxuz+KqKmZfD3fj/aZn/6fj5zP3ZZA50nbrZKaymCiaLxlC1CzXUy+kmM66gjf7S7aS0JP9S/wOC6V4sSp6GqWc4vG4dT6ys4J3ppyyauWlVM01NTbz5zW/mzjvvZHZyhGZm6Xz9B42MGnjjpsXoosSJsIlIqImlEzoL19WzeoPBlZqtNpyCRNJqYl/QhWy28PrQfvpM89x/xybed2kXiqaj6XDT6mYAAtdfz81PP8pAVWVPumDcZCYHhUIT1qM2vuPdRGfZxue8xs3lElMcti7DIoCayiIIYBsu4xB0FGeC+Kk0Ny3yM1j1M9bmRtcEeqOXIAg6C1bvJGWP8jRL+db3fPz03rux6hae0CUEQeUtWww9fbUk4fBa+Mht76Js1TnYlaEsWpmzOQjMlmmIx0g4bTQ7MjwZ3sQtvQVUapRc2zmaK7I/U+CZ8kIEanQmj7CgPkg+mSfhSKApGmNjY7ibGgGBvMVEZTaDpETBs56/6rgDVZD5gbmfhrSRVU1qAbzJY4gVC1LY0FB3KxHSVg0EneiIoUs2T03RrE0zTQNPiEsBcAuGbj5fcxJ6torkdhB83/uonDjBI994gkS8idbmY0hSlXXD3+Fv9/8YAZVWYe8FxlddC7uJCVmyo3F8gU3UzMlzckhbBXvJmELlwIy7pRMlUWLBGXvcUxjXazWtoGp1yF4L5pY+BEGnZDKOzx0wjldNlREtFqp+P5JDYnneibtS5NlkCkEQaCzXk/GYyEfP9XlESgaV4dY0lq/eiqWcR80rSNYEXquftCRB3AB3V10Q25keCcoZOHovLLnxbKFxMDHIrQ/fyvOzL0DLWoSZlzBJAlX11cFVqanEp3IX8O0ADt85OSSAWqiR9j+PVJMJmbpIp9Pk8+eyZtf27VgKORZFT19Y6Az3QTUPmclX3f9/GsUkzB25gJIBXlsxA+BpNjx2fgv17r+z4J7JZDCZTFitxg1+Ml9CyNW4Jr+TtZGDAEyZusn4wxT63SwaeB+qpvBF9zd53fw15Mo2wnYTz11xBUe620hYE2jJFTS7TKzrOMcBHn7xBTJlnW3NGsKCi85u3xD0Ieg6O9dciqhprIrD5jd2nf177plncCbTxO0WMokY1975QVwWHQ59D1EUeP/li3j/5d3YzRJ3XGTwnnIwyA1WAV8+y1cm5uGlb0KtQCqzhnSiB+8b/5U2/9eJFzdRFgSetDg4XH8lrRYzbu3Mo60UYk0ySUIfQVN1lmbzrC+LTD9T4HitRFOhC2oCja1G5jJ28a2MrhtgY6aXGCUGsotoIkdxSkSvBtEVK0u2NdHobaDPt5ITHWlqHicnFzSSGbGhigIVk0ynM8GE1IRefJqapRfV3MJ7T0zy1qOjBDx9aIIdT3WAUEOYYrFIQ7gBTdQYGhri0LzhGRLze9kjGkBQNPcw3Hs7izY+yKhzFU2JM19scwPfO/FGvraoymDHctatOcqCzhO85BJAl6mkjdGK5ulZrPERig3LyElG/UUy5bBLZeLZOthlRurROGYuoAtw0dATXDp5GtGk0Nw8iCKoHKheTcAyyB+Z7mXuzDASgK6ebnRBZ+z0GH7fBlRbCtsZcLfoaczVDIqugtmO31OPkijT5PbgFKoclwzgrObc6LoVyWfB1GRk6qLFAHdPeDmIAkrS4KljnZ0gCLQrdXiKoxwpgKbrNE5EkBSNsdxjZ4/t0fkzfjU6LOxajqNSQszVMJuyOM0uUhYHxE4SGx8l1H4e3z5wN9SKsPpcIfVI7AgAS+uWGtRMchSTVqFQUV5VhhmbzKOp+gV8Oxi0DHBWMVOORMmHDhKM2Gg5M+lqevpcode5dQtYLGyaPXphp2roNxzcMb4T0OG8+/jleE3FjLvR+J/c3K+3z//G+J0F92w2i8fjQRAEsopCXtUQk1VWCkMsLI6S0N3knX5aJyZZ6b8Duerl+ej9DAfTBCL9iJQ57DlM1ONCq4l0xdcwa+pma4edqalJkskkpVKJF57bQRPzdF7/kQv27zHJtKFQsdjonC1zxXWd2M445WmVCpFPfRqfzeAdL7r9nbSs3AQ9V8PAj866273v0oUc+fj2Cyba1L/hem54+lGeTuU5cfABWHYrpdNTWJcZ2dzmrjCZmevJmLy45QKnTBl8GiwWJ9EFEbNHpunYcZo7g6iWHKnjAlvKVkYklU82PkBByWJNt1EzTdHsbGZn5hlOFXezqNzOfHsdVQHWF7w89rVBhh/6BAChViMTWxZehC7Cvo5GCrrOaMBHxGOcY8LRTGfupyhqgo+ObyGEgFUS8cgSf9xYT9W2hKQ2QF3QUC4stCwkYotw6NAhJgZj6IDm93K8QcelmciIjbyvvZ6/6+/hbfIiWmI6RbvMx27ewKy3nbsaulganeMW+XEu9j7GhFNjvmwBXcBqsSLqUE2JFHr7ea7xOSRZQvHOEXbME50Lg1WktW2MbeMfx9VYQhotINlXUZj10dh0ks/WvwehZuclT5QGIYm656tnf6Pm5mZMosx4fAqnsxfVlsNhcpGNRdFLMQQgLyjUbG48qhO9ouL3B/AJBU44fSAIVMoGqEleKwQ60RGxyBnMOLDaQkg+y1lwn60PY1YgqLsRtGMUdZmTyTimmWO0zJaJaiPk80aX6SNRg0IwSybcbjemchWhquG3mJFFmbTJgh49RXJuhtDLlIyuw/5vQcNyaFp59jyPxY9R76gnaA8aRVWgUZujpupMp0qvuCcjZ4upF2burjPumbkzRdXo/CPoUo2GSImGplZEUbwA3EW7HeeWLWya+7/svXeAJOV17v17q6pzDtOT82yezZkFtOySEYh0EaBoCQUrWDKWbEu614qWwOHzta5tSZYsrICSr4QIkkCwIERYYGHZvLO7k/NMd89M51Dp/lETd2dhQcjGfHr+ga3prqrurnrqvM95zjlHONQ/Obej2PRg81fb2KvncbB5oGbDGX86q2PGbxUNvh6lmTcsuadSqXl6+xQIgW9iikC5gDtc4ml9NQhBa3Aj7kI9z6bu5aivh2UTW8jpTtK+IXS5hCI5kSUVprZYN13HE9x111189atf5c477yRVltm5PIqItp1xDtsiFlFdpLlYtrVqdnvy3/4NdWCArX9yO1f/6V+y4cprrD+sfycUJuDEXFGEIi/8ibwXXMD1x1/EVS7yL83vQtv0SbThEVxrLI/49tYIICi6l1NbcFGSAhSnOmgXPeCrwe7OoA0Pc/nu3eRcA5hCp3aLzDMVCRKTOxkd/Cme9FoyueOsjy7n+MRxrkxdCLLg34s56kISD6/7nyjbRwk3xnGFxohN36yTpUkEEscCnVSu2UxXZYihkI+oLcd98i5+EAxQKzm5xLWNzWkTmxDs3baSE4ks2NeTNVMkbVYIXmVWMeAeQNd1+sODGCEH+ViEI42CprgLgclzQ93cXB1huCtO85jJWIWCXD6OtiqIeyLD1hP7aKj+DMK0c4N0N88ZUQxhIk37totTNl6wy8iSjNMbJFq/j5g7wVgpRnDTKiTZpLTtYwTe+wn0gkBt+iCdHSuRZZW3GL/AdBv8KjLIHn09td0/mi2gkWWZhmgtg3oCY0pDCbpxSl5S42Nok1aCO4NO2RmDSYssotUxQqLAuE1GifhQNatiVAk6QHGQV2rxksanWSsqJeREmyii6zpDbjd1JReDGFQ5re/vqd7jYBo0jGjIpkR3z1cZLJY5krL6lnvsfmRZxo61v5jdh2EaTAoBE11Ipk5F03Qyte9piHcstD8ChxKHWB1dbf2jeh2mpLBBslZZJ0bPjHJHu9P4Is7ZSUczsLsUbE55VpYZz/8Ce7aaYHYcW6iGqqqqBeQO4L/sUsLFNJn9++c2OnwQanr1U5l6fguN20E508Z5VseM35JMX49J1Tcsuc9E7gAPJVJgmlyUeo5yRsYZ1DhhLiGULVMX2MJg9c8ZmOhiMFZi6+glGKJIwTGGXfcTlM/j19W/4pgRpN4QvOfam3j7rbdw7Qo7F4unuMJ5gLZr/mzBsXXd4OCeAbz3DrFsROUjly+Z7VtRHhwi+Y1/xXfZZUR27WbptvPnelq0XmRZq1783lk/l1AU6pc5ueqJR7kncgHdp6xkk2uNdZNVB1w0RdycMKqZ8llRRXDiQWRhImo34pCs5WMom2Xdm1pJxp5m+1XLqJbvx9Q9/FytwZ2qBgw2uwLYDIVLM9spNft5djTNO89rxpA1TjieZ9P1YzRd+jnGE9/nVOcdPDe0hxq7guLpQV/2E0wZck47ZsTDkFfiRYeNWyYncbf6WTJaYrikkihrPJ7JsaawClnIPJt8FrfbjbPgZMAzQGpTin2hfUTqG+j05ci5BMuOSqzNnuTxEStamjh+kspJeKatkveM2qjXRrns2LPohp0lrEQauoRWOlkXWQEmTBVTSC6JYinG8dwwDf4GxsqC+ppjBDWFhCNA0VuNjIkj0oD3xvcjBQKUH/0NJaOGkeQSWqseoWZDEewJvqLdgs0owuN/M/s7tba1kZEKjB0fwBWtQhYKhcQExbhF7lnJxJTDlMetZGysvpKwlMcUAoIKmjHtgpmWLEruJrxqDm/akpCUsBN9osDg4CAlIWgUtRwydSplH3Y9wZNTGZAd2Bp20pB0EI8/yN19J8CwjhfxWA8PA2tlFXFVUNJLpEwVTJ2gvUhsxinz/LfBEYD2G2Y/30RxgqHs0By5290UwyvYLSyyPbGIhDHWk6KqefFBIN6Qk9xkiUKhn6x0mGByG5IwwFtJXV0dQ0ND6Pqc5dS7cyeGrFB76BlK2tz2V+OYASA9YrUMbj5TkoGXcMzMRu5/IPf/FGiaRjabnY3cD2UKSHmNa9SnMAzBKFGythBLyxFKIs7+7FMYmLTrF1Mue9hX9zBj3mHWDnYxnDpOXq+iZPjYpLh44tv9SD//36w7fifntzey9WN3Idyh2WMPnpjkJ3+9jyf/4xRbQ17u3b2KWPXc8IPxO+8ESaLyL/78zBOXZFh3K3TuOfs0976nCdqf4IZHf4VpwjfjGZKhCAfqmvjBcJK/7hqmsCbE7Uvewc1r/w6Aban9lIUCSy/D7rFu7lJ3D5dccgm3ve82ckMDFBynCPn2c3/z+ZQa1yAMhZZEjm82/SNKSeIXQsVtl7llcyt+/PRke/D6VmKaGidPfZFDvd8hUS6xLRhEQvDTbB3LL7Y00H73SgpVJ3FJdq6bSuB0nGB5yroh749PMYjBBWUf62PreXzwcWKxGJmJDBFXhEeSj+BSXCxdsoFTivVg2tmRpiY1xX4lxsBgJ6HeU6S9Ib5/5SewGUW+4MpSqWd5Rq3hF788RVgrso8t1BV/jTdWxKaa2P1FimkHXakuwmxAcp3CbivhnYhiCkFvZ9xqjNX1GJLdjv/KK8g88gimw8mJwQsQkkbVsscQ9gk6zToeNTZh7vsWTFguk2XrrYRzZ8cpPJXWqs7MGJTGx8nZnJSFAKGQGsyCgHBDjDCWLGG4DQypAqEIJI+VaFVDEdwFHWW0BKaJHHZi5DROHD+BBNRLtZzQCwg1hlQ4zNNmCL1+K4RbqO+dQpb9/Hg0Sci0krmxQBMAKdMFdgnJESJXzFEyNQpCUOXX8VfEIBuHY/fCulvAPmdfPBy3WlPPkjswEV7Hdvk4MZ99duTeDLKTRbKTpTP09hn4Qg6yk0VGRn8OpiCSWQVCBneU+vp6VFVlfHx89vWyz0dxzUa2Dx2mY3jesSpXQrIL1OIiR3kJ9Ez34jktmTqDszpmnH6w+/4gy/xnIZOxfoBAIEBO10mqGkqywA7lKMJh8qK5EmEYtDnamQp0MdHjJx5SWTZ5PrIw6I0c4MXI89QNP8KAbx/a1EacwuDTu7qJSif5VfcNHGj7Aeb137QKJ7Au3oe+dYR7/+FF1JLOFR9czZs/snZusguQffIpMg8/TPQDH8BWU7P4ya97G2DCgR+e+bdSFn7+x9jr62hpa2L3kf18L1bPjV/+J64/NsDtJwb42sA4RaeMKKi8Y+R+3vbkd7lyqo/jdg9GzUbsPg2EoNzdhaIo1NXVcWjPQ0wFdLZJD+PWSnw56cVjLidbepHa/W5EwM6/dI9z7fpafE4b9a56xs1xAv6L2L7tES44fx+O5r8F4K1b/omNFRfRbUyQWvMBKq54KxmnzKjYzzVt1+L3VOMY+yHL8paj4mv91g37Jr+XnfU7OTV5CiWiEI/HZ4nj/NrzqWpsZThaoCHlIJYq09ntQhcyjz13Hy25ET79oU9SdHh5v+0Fuo8kcLmyaHaFfyjm2Gcv0W27kLTup+GiYYKuAu5gmfxIhsFUP8ODK2mvO0g+7yOQtG6JvnQZrWKbNXknPUzwmqvRymXKJiiJGlLxHRSzvyRoT2OXDb6tX4UpZNjzBQDC0Qh+2U3vWD/uCmvp7pQ8lKammHT40KZdVVMjWeSQk1JRJ6BLKJgIVxHhjCJ55dlVnRpyIJkgJ+yQHkKZ7qb4wlNPUmnzYUchK2XIZELYisfJyG6ONF4JgTpshQxTkQ8zbATxlo8hTBO/16psHSspyG4YcwiUjJUEnZIl6irs1rFf/B4YquVtn4dDiUPIQmZlZOXstiFvOx5RYmnwTFlmtllYy+Lk7gk5yEwWGRn5Ge7JFbhN1eopI0nU1Vnf3+nSjO+yS6ksTDL03DxppnIVmLrVtREwz9UW2fNbcAahas2if35px8zrs5DpDVnENN/jvidhXVQt8V58ooDNY3CQlVRP5HDJbrodL+DK2PE6lpBQJXRngg2JjRRtRb6+VmHI9yJ6ag2XcYiKJ2/nypq7qQ9leepJF498/j6SP3+AF37Vw92ffYaegwk2v7mZWz+7lZZ181qIAma5zNiXvoStsYHwe/7o7Ccfbraq/1783pl+3Yf/Cib74NqvEbzpZt7zw7u4+aH7+ItTB/nhmhae3baC3gvX8vCGJURfHOALXf/MHy9xs1Qt86QL/uFf/oYxI4Yt4qLUbRWpZCcnOH5oLzmHSttQkttGHmNv7xQp13qK/l5KExOcqnRS1A3ettVqILUsvIyMLcPA8CBudzN2e5gXxl/Aa/OyNLSUD65/G0Iu8u0D9zKQnOKYfwjd1Lh15dtgzf9AdD1ItNpFbcmkv1imJm+wtCHIzvqdAAzaBymXy6x0W8Sxq2EX7ppKxkMlVmD1VLngwIt49CLPl1R+de1ldNU20DT0z0ylCoyPj9O+Wuc9q++hhMkdR6/l2d/U8tDh3TgCZeq3j+EIqMiaScVogPxUitrAAKMjS6mptVov9PtryRcaoJSC/28FznsvRp1+UPsKDhhuBlPjioCBz1Oi34zRX/cWqzx/8HmEEDSG6xgsxcFtEblb8VEu5pl0eBHCuvVSiSJKxMlYbxqb4SKslHC6s0juMMI2JzcUApYcY5S8MN6BEnaSoUBJlqg2AhilNHWuIsMJH7ailVB8KrzRkvmA35Q34KBInXYCn2EgeWOUNYPhnIHTYTDqhJq8lSMaNFzEPCoYutUkrOkCqJgb2QdW5N4WbMNtmwteuhzWaqXdlaA7kVsgl4x2p5AViWj94iP8vCEn2I9RLA7gH9qBIoZmG4YFg0E8Hs8Z5F595aV0hBqYSs6L3Oc5ZnJTk3zjQ+/mse98c7Yoa1GYppVMbb4ApLNT4ks6Zl6HwzvekEVM8z3u98ctvf2qzBMU0zJDkVqKwsXyvB/DVHluWv5oKl+MjEnC18nu6qt4b+VbeHKVxLC8HB0XN4lfMLIvQN+/j9N2z6epH3iEk6M+/uMBiWfu7aG20cmtn93Kljc3L6x4m8bEd79LubeXqs98Zjahd1ZseCdM9UHfk3PbOvdYjoXtH4bG8/BdcjHVhsYHfv5D/ijq56KIn0aXA0USxHxOnNEmDCQigw8iCdjv8rLX28UPOpdxKOYn02W1dj36m0eY8FiJrJpeuCmWYWW1n+8cjIIwKVZ08U+JSdY3BFlVY/1O62vXYwqT/X1zEdP+sf2si61DlmQ2V20mqNQypO2hmIkzEjjJjpodtARaYM3NYOo43d0sm04mbk1qOFoCNPobafI3caxkkdMa1xquarmKXfW76GIQQ4IW5xIALpnowDOZ4ydVl7F/+Wo+/uNvsypmo3CiQEVFBe2r1lIfepG7Wg7wgTV3sTTqIHfcxtihKPKSEhPLrMi3vncZF9c9ASqMjbYQXRbFaUBfpIX8qIC3/xSu+nvEBR/HWG9ZAw3TgfPUI9QM59jiKVPh6SMvuXlW2QqeGPz6f4Jp0ta2BFXofO/r/86UyOGS/ZimTsrhxWkITNkgkyqhRFyM9aZRNBchM02FdxLhimDqc0SScsSn/09A/DhK2MmgbCVP60sV6MlOltnL9I+5UYwUkeIgT42yOWEAACAASURBVJkhCNSRk5w8kIYdzlE8aNbsVHeUU+MZNAO8NpVxl8ySotUKYtBw4hdTMPQCTPXDhnctuDwN0+BI8gjt0fYF23u1ChJmgFXGSXTDXJB8HOtJU9HgRT7LCD9vyEGgaS8SLnzjG7EZXeC1TAhCCOrq6s6M3GNR/uqy2zlRtWRuY7gFZAeMHUUtFqlduoIDD/2C7/75R/n+pz7Oiw89QCF7GkFP9kBq4Kx6+wxe0jHzB1nmPwfzI/d9qRyoBpeZ+0jnnRyUV2JTizR42omLHmxDboo+GxkzgMuZw6UFueIdF/L+S/4nbaMGamojFcYkm9/7f6j43gGW7N3L0r1PcdXdf84F1zYQrrCxvvMu2r77QdQHfrzoMlAdHSX+L1/Du2sX3gsX1/QWYMXVVgJr/3RitTAF933UGkiw638BVqVe4Oqrgblk6nxsbqtixIwQyp6igJ1lq2+hqypN29oAvYqbhx0aBx58gMOP/RqWWhFb/Rh4t+3gC29Zxb6hWgxTYfS8UZ6fyPH2rY2z+15TYy1dj4xaTawmi5N0p7rZWLkRsG7GW1bchOQe4FjoKKqc49YVt1pvrlwJVWtwTP2UZRnru9peFChBi2x31u/kcOowqlAxJrLc4WjF/eLdPHPwLmRDEOpNIrkcxJKDhMesG+qdj/2M6zoOslRdgbPo5LwLziMSsfqM51f9kq3VR/nR+99EQ7jMiePLcWRNujfYUb2C1nScHdXP4dovIZVkyhQImRJDoVryL+yHtoth822w+6/I7343AHY1yahjObUXfQdZQIvvMCndRs9wEnPnp6z+JB2/YPXFG9m1/DzGjSl+Zn+WYb9AlWDK4aVZlpCdJtmSgRJxMt6TJuAL0SpGcLgEktOPmbOcLYahki51UZDdKJIO4x1IbhsDchKnLhPVQujJThopYBo2qnVBRO3i2XQBzVfDr6IXkDUl2uw5chr4DBM8FTx0ZBRJQMSWJ69ItJas3MCQ6cRZGJ7rdlizfsG11ZfuI1POsKZioYSRyKkck5exImXNQu0YsUhU1wzG+zNUnkWSAXAHTXx1z+Mtn4+kO1HKHVbXyWnU1dWRTCbJ5/ML3lfldzKanqevy4pliRw/RrCqmqtv/xQf+Pp3uOjd78cwDB799tf5xgfewf3/+056DryAYejz9PaXI/eXcMxkx6zRg68jvCHJPZ1O43Q6KcsKo2WV8NQUa6QeioqDkzRTPTaB4olxwHuISNpOyNyCDIy7T7F705uQbRL5k73c+FAMPdvGW7cux966ESUcRgmFUEIh5GCQNZe3cdNXLmHz3X+PZ9s2xu+4k753vpNy/8IKufG/+VvQNCo//alz+wA2F6y+EY7fZxH7g5+CzChc9zWwzU3YiX74Q1R/5SvYW1vP2MX2lgi9hrWsPWVfxS2r341hGvRs8HKd/Sj+fIk9d32d1NgoelMQry4RzoB759Vsagrz5rXNdKcaGIo/TdBt46o11bP7bvA1oKDQlbHaw+4ftyL4DbE5f/CKcjOSIXEyeJKIvYbza8+fO7m1N2NLPMglKY2dYyoXBefGm+2s34lmaGRCE4w9/SP45Sfgl59g78hemtOCVF8/Tm8aoek8cOp2/u++P+E99/8YubEBo9MgZUthxAw8niXYbGFKpVECgXXIspNodoJUMMjaE1Ng04m/y2RN7XEkm4q634PX5yWRTFDttjNmc1M6cQI9PbfkPzaYBlNi9clHmRoZBvc6dAOqPb3opiCR15hqudpqrPXIZ5HQufDmS/no7R+jzVFLnyfPiU3bmaoIc6HLRmVZIWtYydGx3jRVNRW0iWF0rIetlrAi1VyuE9Msk7XV4JLSED+OpmkMi0kazRgCgZkbJKZmCJGmuZRH0rvJ6gaHCPDjqitoNHNMpZ5jSlfwGwYpY5yf7h9iR1uUsGmRo1tYEs645EDoJczhA2Q8CgTrF1xbhxNnJlPBGozd7VxJU/o57LKYdcwkh7LoqjHb5ncx6MozyPYCnvj5CIeMlO8C7xy519db53B69F7pdzKaLi3Ydrpjxu0PsOGKa3jnnV/lHXd+lTWXXEH/4QP87Cuf5ZsfeS/dT/3aWiVEl/BSeGnHzOuvkOkNSe4zHve90yXp20atvtbd3lYMZFakrKx/V74XAF1axnG7xt36Em47MsKSz/yK9d/t5DNbPgFC4n/sXPGSx7NVxqj7+teo/vKXKXWcoPst1zJx992YhkHu2edI//KXRN73PuzTiaFzwoZ3gFaEn38IDv4ALvgzqN244CVKKETwumvPmJUJsK0lQp9pkXs8uoV6Xz27G3bzk+RBfOEcW7pH2H3xVazZfTlxR5bGCXAEJZRq6wb/yyuW05VaStTRy1s3hnHOawalSAo19hrGjDEKhQL7x/Zjl+y0R9sxDIOHHnqIxx98nCVYRSXvWPl2JDHvUmu/ESFJLLMN83cHioSa5m76teGVBISdceko42YIbnuU+Eeeo9NuZ110GznNge1Gy2/93NSVHOuowixIDNaHKaQLHAsd40jyCEJIhIJbAQgGt2DoOmIygc9RxpfTmdofgFVlPG/SUQYFJ4tRYrFKkskkzVEPU0BBdpGf56NOjiQQup2qgYME8iVGTpwgrzmp9ljySMZwMDQyBhd/HpKdsN8aIO3z+bi0/jx2FlrBMLC1eHmcfRQdBQomFFw2SnmNhrZaGqVx9OnfTR2ypLNM1iKqknsZXjGGOdbB4MAAmtCpN6JohorhLGNPTXCJp4tmVSWTPwjAj8ameDK4npsKRzkYP0BZ2PEbBg93PMbQVIEbN9ZRZbPyDBmbB0zIeq0q2VOZ+3huY5DJzIsLrq1D8UO4Fbcls81DMldi1L8GRRgsCZqzjpnR7sWLl+YjlXsANRfGPrwEJawgMBaQe01NDUKIRcl9PH2aM6ZypRVJT6985iPW1MKud3+AD3z9u1z9p39JRUMTvskDlktmkftoPs7qmJnOa7zepJk3JLnPeNwfm060XDe5h0ndQ4dzKeFygmrvMkp6CveASt5VgSkH6HOU2FQZ4qo11bz/whben3ieP0s8ww/ft43GiOdljmhJEcHrr6Pl/vtwb9jA2Be/RP973svoF7+ArbaWyPtue2UfonodVLbDiV9YwxAu/OQrenvIY6fom5ZSptuzvnPlO8loOX7V6EMA9ZKdi9/3YbpSXdQNqbja5m6mmN/JurbLOJRYzY3rg2fsf0lwCSl7iuHhYfaP7bf0Vx1+8pOfsHfvXrZs2cKd136ZK5uv5JaVNyx8s68SWnfhyt8PEjhbp/ef7EK560ouyEzS480ybvrRq9fxTMoqjNnRfCkA5Y3W56kdHaNarcAQgv0OL1VVVZgV5mxkGQpZ0kwouJVUfAxT12mxTZJXPPxm2MfUuMB0Q/aUh7TbSX1rK7qu01TlAAGnatZReMEKDOIDGXQ1R8HjQ3I4qE/nGeo4hiHFqHUWkIVOTrgYGhqCZVdYTd1+cweULCJQAg4aqSZ08hCpuEHOnuWk53ky7j56Tk1r50ti1NrSlExLa1b7T2KUSmQyR5FlD0ZoHXapSKkMncdeRJhQY4RJloYpRAJo8TiXuk9Sp0JZS9LmUvjecBJTSJw/8SgTxQnU6aZhD/RG8djh0pVV1LmsHNCYW8KtOSjGptsxFKxzz2SPL/j5DicO0x5tRz5t/F4iUyYdsiyMy+3JWcfMaHcaT9AxOy/1dJRKcSanniQ7fB5yVkPxTydifXOFf3a7ncrKyjPIvSrgYDxTQjfmtTuofPk2BIrNxtJt53P9H91EhTm0aMuBM95zNsdMYIbcX19J1Tckuc9E7kdzRTBNdpoHOVhoZUyKUTk2jBxdypDah6ss4ZcvoM0u8T5MvvnRHXzp2tX86doA1z35I27Z2jBd8XnusFVXU/+tb1L1hc9TPHSIcmcXlZ/+FJJz8Qv7rBDC0noVF1z3jUWr5l4OmSXX8g/qDcSW7wBgXWwdayvWcnfEDx6JUnc3o7lRMmqW+lFwr1uYILv1gmt43zU/ZknNmdW3a2vWUpJLHOw/yPGJ46wOreY73/kOHR0dXH755Vx55ZW0hlq588I7Fzgq5nZwM67SvVTfas0F5cAP4RsXwkQ3O9e+l7xQSdgSJJNJnhl5hpAjxOalFqlP5tJIXi/GwADt+TH6mhqZwsnO889jdcVqjiSsXEB19fWsWH4nodA2JkesG28jfbwQWMXJJSoPDQawP2rne0EFX6SC+uly+7rpGRl9zZvI73segMNPDKHLBWx1Ffh276ZmKsvQ0cM4fO3YJZN67zCGO8Lw8LD1213yRcjF4al/tH5Onw2bcKDbXWSLOkqygKMUJu/rY/+Tx5DtEuEaDzElS8asxzBNzMIkan+/1ebXuwJbjeUeKugBOju78GoCOwqJ4hA5nxstHmeddphCyZLQljmKmMD56gDx6QlOeVPHJxSeGd/M1ppOnDaJRr+lJffFJvA6VLKOBKrTRdOIgWIq5PNzTpOSXuLkxMkzkqmmaZLMlQgEglDVznL9BOOZEhO58ksWLwGMjt0LGJB6E4pqYHNPty6YF7kDs0lVY15eq8rvRDdMktl50swrmcrU87j137P420/Hoo6ZmUKm15lj5g1H7uVymUKhQCAQYFJVCappfKLAgFKPjEZj3IOQbXSlj1NwOpGUBkKKyabtKxA26+vIPPooAL7dF7+qcxBCELrpJlruv4/af/xHvLt2vboPs/Hd8MnOuUjkFeKq8zcxuv7jLK+di7zftepdDAmd/atUyl1dnJqykmYNcRP3jjM/b8BtW3Tf7ZXWzf3g8IPops7I8yOMj49z8803s23btkXfswDLr0I4fMjHvgU/vQ1+/kGoXgt//BQ7tnwMRSiMuEcYGxtj7/BetlZvxR+pwOHxkBzow7l6NRgG+Y4Ojq5aRbU5xjLFqpgcyg6RLCSRZRc1NTcihMTksLVkXlI+xf2+Rka8GeRcBX23foaj0TLeZQ2zI/c8phWZ9flqKRw9SjmT5/jz/SAZNNfECFz7FpSyijh8FG/wPABWR05RULwMDw9blZR1G2HV9fD0P0F2nPK0rdFh9yP7S0y6xiipPgiEUONuPH47kiQImRMUzRomTQ1MnVJ3F9nscXy+VTgare+8YLoYncyhTNdzxMsDZGwK2tg4kXw3A0VLRqzE+sxvFaMcMHK4ZBdlTJzCSVF3sCn6CyYnnyYacOHRswxFj+GRTLJGFbbKDcjlAm4RJp/vnv3ZjiePo5ma1SxsHtIFDVU3iXjsULeF5dlnATjYNUE6UTxr8RLA6Og9+P3rCChNCEBxTPeLWYTcy+UyicSc3FLpt4KmBUlVbwzckXOrVO35LYSaIdjw8q/lLI4Zhx/s3j/IMr9vzBQw+f1+yuVJVuRPUDBtDDnqWWp0E3UtRTfKTOUG0DzLsTkLCCB6yZwbJLtnD/aWFhwtzWc5yrnBVluL/7JLF9XEzwlCgGNxX/C5oC3m484b12Cb159mV/0u6uwh7l0nU+rq4uSEJXk0ZXRsG879IbQ0tBSAF8ovIExBpBTh3e9+N8uXLz+3HdhcsPItVvXj0XusYcPvuh8CdXjtXjZWbmTEPcLBoYPEC3G212xHCEG0vpHEQB/+yy4DoKexkZzXy0W2g4iO+1ldYSX5ZqL3GUyODOF0OXDJKk/ZskjCTv1JiZqiRTr5RhdutxuPx0MhPYFXlhgy7BiawdG7fo2qWr3S19dU4TnvPAgEqJlIIyc95HRo9Z8kpdtQVXWOfM7/OGgF6HqU9HTZv1v24QzmGKoa5v6V/8xPQ99iwj1COllkpHMKrzaBYVYwjCUzZE8eQNfz+Hwr8dXXUTS8lBTrgVtK9TO5KYsWNkibOmaxiKEJDqhrsQsXntIRvt3exPU+g0N2heUBawVmqHbqQy7aq3KcPPVFdOOvqJDGmVBbiE2tJKOL2WjUba9ZELnPJlMrTkum5qzIucLngPotLNOt6+r5DsvCeXqb3xlkMsfJZjuorrqOoNOSeRTZ6ne/GLkDC/q7VwWmyT01j9yFsAKilyN3XbM6QZ5j1A5nccwI8bqcyPSGI/f5Nsi44aEpM8qDxg6KwkVDvAd7rJ1EsZ+s3SBgbqdGFgQDLuTpgb56KkXuuX34du/+r/wYvzfIksw72q7neEThuD/LybEjRDNQEXUgXsGDJOAIEJJDlKUyESPCh977IWpra1/ZyZz3Ectq+J4HrZzCPA33ooaLyNgzPBx/GIDt1ZZ+Hq1vItHfh3vHDlRF4diqlUTzeZasaIcTv2RFcAmykDmUOLTgUJMjQ4R8ClM2Oxn9JE7fBTg0iczTxxAGjPsscohGoyQSCeoDLiaESXnzJXQ8Gyfvtfp111dEEYpC4Oo3E8vkUI/30l+WqPEOMpbVMU0s3R2gcjU4A9D3FBMl67p0KT5MeZyOihGcqocWdQm/WPZ1XD4bD33zMGrZjmyGGJEEWihCoct6SPl87dgcCimzAYfI4hJlpGIeZ0OASG09qaL18FA1H6Pu5Tipoi/dy5UVQUq+Ck7YbSxxWSuTfMnB9RvqaGn+MLncKSRJRklLjKkxApqfvJq3olHAJ1dTKo2i69b+D8cPU+muJOaOLfh+ExmL3CMeB9RtooIUEYfBsYEUkiSoaPCxGEZGf4YQNior34xnho20Qet7sy2UMiORCC6Xa4HuXjUduY+dnlSNrbKanZ2tQtU04defgVLaugbPES/pmPkDuf9+MVPAJLw+8gYsLQ/QYS7Ba+ZwjzqRPFEG8l30Vvqwmy78OKlcXzH7/uxvfwuahu/iNya5A1y75jZ8msH9WyROjh6lfszAvfzclqXzsbLC0oB3L99NMHhm0vVlEVthFQlNt4udjzfVWQmuF/UXafI3UemuZGxsjKzdTcof5Vs/v4d7brievMfDZkVBrLwaCpO4h/bTFmxbJHIfJqRk+Wl1K6apMuzeTcnhpvvpvYSzDro1izCi0SjxeJwlNT4mZZOJLTcx4WtlKGiR18znDN94I5IJ+m+eYlBVCHnSqEYB0+6eI3dJgobzoPcpxnJW0tQl+4iXR/HJEm9+cRXLn8+Qc06h7+6nmFP5derPsOFjHIPJSDXl3n4kyY7Hbdld8/YmAiSpVocQgCcYIlzXQCabRhcC3dfOirowajFKT9qKuI+YRQwhqJcsIlR1LzdsqKO25mbWrf0269fdgyNrMGlz4NRsFChiSpaDxmda7TVmovdDiUOz/nbdNClOD+ZI5qyHX8Rrh1AzwhNlmWOCrsk80XrvooV9hqExOnov0egubLYgLt2kYJgUUlOzBUzzsVgxU8TrQJbEQlkGLMeMmrcKlM48MPziz+DZr8P2j1h1JeeIl3TM/EGW+f1iJnLP2K0LuaIwSUn2sEYcxzY9cWeo0EPJby35XKaCa9Xc9PPMI3tQKiosTfcNCrfDy42aj33LBL3aKA1xcG3a9Ir3s6LC0na31JxJzr8r6nx1VNuqMYVJIBXgjjvu4Gtf+xoHuntR/SFsksTaYpGLHn2UZVu2QutusLnh2H20R9s5nDiMYVrEo5aKZJJxAvoQP7YbLI9uRLXXk1yzBUPXaKKKY8ljGKZBNBqlWCxSH3aQkUwOH80DJll3GbvbjaJYpOdcvhw1FsXbcZK0GUIS0OgbxBGpmyN3gKYdMNFFNt6FpuXxyF7CeTt/7NKwT/USm3JQlanmp9nvceGbsiTV1UhIFB0mg94KzMEJvJ7lSJIlxWTcNXhEgaqSVUvhCYaJ1NVjmiY5hw3N3Up7TYBUOsRobpS8mudg0erfU1G2XDB+V5SGiBshJCKRN+H1hvFrZYp2B4YsoQmdTHl69mvZIuV8vueMTpDHswVafnuIhxMpEtMJzajXYckU9VtYpp9iRFWpaFpckklnDqKqSaoqrZbXSlEjq5tkJ9UFBUwLrou6OuLxOMWiReayJIj5HIymTvO6n80xYxjwwMesau8dH4dLv/SyFsj5eEnHTGb0dVXI9JqTuxBipxDiCSHE14UQO1/r/b8c0uk0brebuG5plqWsNZx5jXYUR2gVqXKCfqefymIDmnMCWRLYay05wiiVyD7xBN7duxAv0WPijYC31WxHMkCXoDFp4Nzyylcq59eeT523ji1Vrz25A1xQPW151GpZu3Yt1113Hbe954/wnjzA+voqdm7bTmw8jnPlCmvmZdvF0PEAayLtZMoZ+tMWAU6NWsUlw+4So0aB9616OwFFpr/VIoCV4RVk1Ax96T4qpmeShqcToFPCpNzowl3OETytB5Lz4t0EckWWPGpdP82BPvBGGR8fR1Wnb/JGK+HalX0MtZTEJXtpmnJSGSrStPEqALamrSTwkPdhVrqseaduQ6dDCSKyOl5zrkgtabNyBDHVImxPMESkzlp1ZZ12NFFJe20AvWQFLP2Zfg5MnaJF1ehLWInKtuq5/BJYEXEU60FoBCwi7picACFhTycBQS7fM7samnHKdOSKGECDy0EiW0YICM0k4Os2U5cfRhVgVi7s3z6DXNZK5vt81v5EpkzWMMmmjTP09hnM6O7zH6CVfueZskzFCkAsdMwYOtz7Ydj/XUsGvPhzr4jYZ3B2x4xpEfzrBOfEYEKIbwshxoUQR07bfrkQ4oQQolMIMTOKyASygBM4S9/a3x9SqRSBQIDhUhlMk5FSJVEjjjQItvASRgvdvFBdR1WmBadvHMfKMJLTisZye/di5vOv2iXz3wmVjdvZecoisKVaGVG79hXvY2PlRn51w68IOl+FJHMOuG3zbdyw5AY+9+7PcdVVV7F27VrqGhrxhcIkBvoIXHM1jXd/H+dSK7nLimsgO0a7bt2wM8m/GRvkoxGZaneMXQ07uTDk43gghglsabasokcSR+Y5ZiyNeUo2OdTmIVzI4u3vJ/f007Pn13Cz1VKhsrNMKWOj2d9HDheGYTA6On2TV63l/kCIH4e6MQspXEoAkbfOr3adE7CxSq2izlvHd5L7affsAyA6aaPHNr26nJyTDfs1izxlTBwOBcVuJ1RdixCQddnQSjZW1wUwytZ7elI9HEwcZK1p48VJSzpZ33JmJWZ4evqXrcYiz960AIcfKdmF01lDId/DofghJCGxKmI9FE/kitiEoMXlIJEtEXbb54bL1G+hXbKKsKbci9NMLt+JJLlwOmvQcyoUdXIGZHPKWcl9Jq+zIKl6egsCsB724ea5yF3X4J4PWgWBOz9tJfBfpdFhUcfM67CQ6VzD038HLp+/QQghA/8MXAGsBG4RQqwEnjBN8wrgL4DPv3anem5Ip9P4/X6GJ+NUZKfI4mMjh5nIbUaSFDJGmrTTwK36qHAWqdw213o3u2cPkteLZ+vvJxJ9XaF6HX90vMCtj+ms8LmtBNbrDNXeaj533udwKa4F2yP1jST6+xCyjHvjvKrdpZeBbKe1/wXcinseuVs33N6wxFuX34oiKVwU8ZEQMjU3voPtGy+ffb3f78dms2ErWVFuaGsFe4JlbJqKX5YZ+8odmJp1UztaWxEuF75GH4mMjZZALwf3W4ncGV34/3b9nM+EfKwraEjZSZyKD1MHDSey7xBC8iKLPG9f+XYO6mmGZYuUC4bOUscydMmGa9wqoisUCvSmS5RNO3YFPNOlD4rNRtCpkvM60RJJagJOArZqQPCbgd+QKqVYpVTQPz3DORpeGLkD+HNWrspdbTlqJspei2DjHbhdzeTy3RxOLOwE2ZEr0up2YJMEyWzJ0ttnULOe9bbjPLLjGFdvXrwyO5frxONpQQgJLWF520uKIKsGFhQwzYfT6SQWiy1MqgacjKUW6d8+45jRVfjZ++DwT6zeTDv/YtF9nysWdcz4X3+FTOdE7qZp/haYOG3zFqDTNM1u0zTLwI+At5imOZOengQWX48BQoj3CyGeF0I8H4/Hz/ayV4xUKkXA52H41OO0j3QhTIN1UgcF3yZUo8Rv5Sw1mvWxqyUb4aVW1GnqOplHH8N74YWIl+va+EZApI1ap+DaZ0w87Uv/q8/mFSHa0ERyqN9q+jQfTj+07ETuuJ9VkVWzAyUmhwcx7BqSAtcvuR6AnSHL9TC19SIcDieroqs4kjiCJElEo1HyU0nCHjunJA3vtBOl9pJLKZ06xdR//AcAQpZxLl9OxUie590qUfckmguEWubZhx/kx/u/z+f3fp61ZQ9fHxpFFCZwKW5kbKiilbK5n1hzDVo5zXVt1+EzTDqVanSlhH/jdwljp2P5LZh9lhzU09ODCUzq1XjkEh55mtDSw0SUFBmnEy0eRwjB6poKZD3Mnv49AOTUbSDlcRsGtkWiYnfSmhCVwyIu1QxaHRbzSXxSjGKmi87xA2wOLIFcEjJjTCb7OY8klPMksmVLb5+B3YO9ajltE0+cMSpyBrlcJx63tYqYIXfTLZE1omeN3GGumGlmCHfM7yBT0siVTuvWGFtlDU/5ybvg6M/gki/AhZ84637PFYs6Zl6HE5l+F2G5FhiY9+9BoFYIcb0Q4hvA94B/OtubTdP8V9M0N5mmuWlG5/xdUSqVKJVK+EeeYlC3ka50stbYjyiqeEIrSOb76fC0Ulv2UlZy2LUgynTPlMLBg+jJ5BvaJbMAkoRvUyuBlhyuzef9V5/NK0K0vhFdVWe19AVYcTVM9dPuqqRjsoOyXibef4q4V+XK0CpCTsv9UeO0s9zj5LEJK2JdHV1Nx4T1+hk7ZFPEzal4loqSRe41O9+Ee/Nm4v/4VfRp/d3Z3o6vN85A0VriR6NTVFZU0CvG+MqBv6EhH+Ki41UoBYFZnALApXgR2lKKxUGizS4yE0ncQuGmdIayGaPgHCFQcZz9Ho2x2FaGu6xjdXZ24nA4SOmNBGxZPGbK0pF7nyRiz5OTJErT04raa/yUixFKegmf3ceT6VW45LTV7tez8H7TNQ1tbAinWiJetCRK03RhxiwtvO2ef+XC3/az51QHf/nY1+BvW+Dvl/LA42/hy7+8Evqfno7cT4vl6rdYzDx2nQAAIABJREFUbYNPfwgDmpahVBrB47FWClq8AJJA8Wlk9cjLknuxWCSZTKKV9bPbIStXAqbVwuOyL8OOj511n68EizpmnAFruPYrkWUKU/AP7Vatx+8Br3nW0DTNn5mm+QHTNN9qmuZvXuq1r/WwjlmP+9BjDPtaqS4naGSAYyMbcduCJNRxBuUKavKVFINdIOYkmczDj4DNhudcWvK+QeBo30LNlhRSw5nT3l/PiNZbskJioO/MPy67EoTEmswEmqHRMdFBfGSIKY/GraveveClF4V9PDuV4wcjSVzuJaiGysnJk0SjUVKpFA1hF4mpIitNKzkaDoep/PSn0FMpEv/yNQCcq1YilVT0UQnTFEQ8I0RWtfJUzQv48bDjaR9qww5KJRtGwZJ6XLIXRW2y/j82SW5yAjXRwS3pDDE1zIgtx4EDl5OsBkyNwUwQ0zTp7OykpaWFgqMZn1LEr+Rgshd6fkvEayW7Uilrgb26NoBeskh8mX8Tjyf9eORJ/LphVW/Ow8TwIGYhj6dUZKysIBBklQL5wMVwyRfJb30bnU1u7qrwM37hn8IVf0v/7ju4feknObjr76BixXTkftqKt24LlLMwvrA3DUBuuup1ltwTeZSIE6+rQFaPnlWWgbmk6snj3Xzz9t/iHLXyBWfo7nVbrM965d9ZcxBeIyzqmBHilU9kGjti9ZG3v3zvqleD34Xch4D5vUDrpredM17rYR3pPivf669sZkT2UVsap44xkopVAHPQV0CXVILFGEqoF8f0isE0TTJ79uDZtg3Z++orQv/bYdkVEFkCtf+9yD1SVw9CkOhfhNw9UWjcQfv0IJEDffswSwZeZ5kVLZcueOk1sRCyENzeMcAXBi0d+a3PPsS3M9byfkTNoxd0qtUSLpcLl8uFc8UKgjfeyMTdd1Pq7sG1ykou1g9DQQ3QHOjlruS30CSNz276Ep/8t5+h2lxMGDWYM+Su+JGLXhz2SiTPMDZ3kc7n3k9M06lWw5yQEuiKQtSpkVWTjPmWM9rRQTqdpq2tjbLXeriF7XmrUKf3CSItli01o2sYhQLttQGMaXIX2S3opkDIBXwIq+f5PMR7u5HUEt5SgTHVwC0U0nKWeFyCHX+C2Plp+hrcPF8dJrLzf8HW9/N02038oPrN+Da9k6K7imxJWyjLwFwf+NHDZ/xMuZzllJkhdzVeQIm68NrSFE0/qj16xntmEI1GcTgcdHb0YGgmtdNWyzMid381fLILtrzvrPt6tTirY+aV9JeZ+V4qfz+269+F3PcBS4QQzUIIO3AzcN9rc1qvAqUMqd/8HwDMK79IUZJpzfWTLTgJeZeSz49x2BagVkxPf/fHCa6wluilU6dQ+/vfsFWpZ0XzBfDR51+XydSXgs3hJFhZRWKgd/EXrLiGqvhJYo4w973wYwC2hUJnuCPW+910XriaZ7at4DvrN+K2R6ijn5LXIotT2ekeJ+kiodDcEPSKj38MyeFg/M47sbe0gNNJy6hJXsRoDp1ioNTN5vhmbFM2JFlhYmKCtKjDmJZlHDYPRipPKLwdTepg6fW9SOkxTLzYTSdDcpzhimECZOmWipQdQY49aDUwa21tpeyzkncBWxFOPQyTvYTaL0AIQcZpR4vHqQu5cGNZJLsHK1hT6SAvm/g5s5hovLcbm6wQ0MokTAgImXFlgtyg5XV3OmvQTMFyX3C2E2RHrohTEjS67PM87qdF7uFmkJTZeabzkct1IoQdp7Me0zDRktPkLlutG3LFszfakySJ2tpaRseG8YYctLZYebMzvO7wqh0xL4ezOmZeiSwzetia3HUWT//vinO1Qv4Q2AssE0IMCiHea5qmBnwEeAg4DvzENM1z6NSzYL+vjSxjmnDfR0nnrCd3NmjJLctz3byQaCHmrGcq3cuQiNKgmWhCpclhEp4uXsrusZJO3l0X/W7n8Qf8pyFa30RioH/xP654MwDtsgdteobuzqU7Fn2pLARNLgeXRANsrVyDvdzN989fjxCCP6118tHLl6LkUwvIXYlEiH7oj8k+/ji5p/fiWrmCllHoNA18isYuaQOrXasZGhpicnISwzDImhWgFtDNMjaHl0JyknBoBwZ5tKJMRN2EJqxujsFYhKOOo9iLcfZ73EiGysjJAtFolGAwiO4No5sCl8sFh34CgK1tJz5/0PK6j48jhGBNxRrCyS/SG9e4YUMdGUnCv8gtH+/rJtrQSFQWZIVMxIAxexL7iOWNKBsq45qgzjEX8Z/IFWlzO5GFIJmdrk71nBa5yzYIt0L85BnHzOe68LibkSQFPVUCzUSpcOEVloU0O7kIUc9DXV0deTVF9VIvXqcNn0M5M3L/PeKsjpnsqGW7PBeMHrbaef+ecK5umVtM06w2TdNmmmadaZr/Nr39l6ZpLjVNs9U0zb9+pQd/zWSZ5/4Vjt5Dqvp8vF4vI3lLI5Umc6hiDZKQ6ZHjjBh+akteJnx9+EqVuCOWxS7zyB5ca9dii8Ve6ih/wOsI0YZGpkaG0crlM//or4G6zaxOJfDnbIBJpP3lV2Wro6vpTfeSN/KEQiHshQk+fkELWnaCcDi84LWhd7wDW0MDY3fcgXPFCprHTJ5KWv6CpoKH2tpahoaGmHGC5cseJJsBTOJy+EnHx6msfDOtTZ/j5D1NKOkkumSpnOevvIiMmWHYfJG400MwdYqsGqO11ZIwJEVjquzEbrOBmgNXGGIrCVfXWOQ+fcxVNQEG4jZssuCaTS2kJQm/uTCSNU2T8d4eKppaqLZbHnq3ZpKRs7gKdrSpEh0THYyrAr8ozL7vZK7Ico8VXc9G7r5FzHEVy84aubvnJ1MBW9SFV7Oktpcjd58jAgKclRaRVgacC5uH/Z5xVseMaVgE/3LQypakVtX+8q99lfjvX4Y5sA8e+gwsvYK0s45AIED/9JCA8SkbNa4WDK3IvqADzbQRLUYpBrsxS9ZSSB0ZoXj0KN7/v7hk3iCI1jdimgbJoYHFX7Diai4e7aI578RnLyHXv3xeYaby8mji6KxjJpVKYRjGgsgdQLLbid1+O+WuLhIij0MFd9yNZsgI+xi1NTVks1l6eqZ7m2SyaE4ZRYrjVQKkE+NIkp3G5rcj4ULJDaNhXZMbl2yl1llLV6CDqoAdpTyArvip8E6nuMwcyZKb/8fem4fHld51vp/3nNr3KlVply3Z8u52b+69O53uJGQj6cBkIwEyQJIHAs8Ml2GGzAOXJ5BZ7jBkgHsvFyaELIQhJGEIJCEQsnQS0ku63ZuX9m5LtmwtJalKtW/nvPeP95Qky5It27JKkt/P8+hx1alTp356rfrVr77vb3HjOLP+h8AwSPZvoeh1UxtXaY27uyLYEu7aFCfkF5QMg7CUl/we+ak0lUKe9s1b6Aso52xagoqpnGvtXI5D6UNMNAQ0JtU814bFhWqdHY5zn4vcF0khTu2A6bPKmTlYVply5TzB4KVpkK5kgFBdbbRezblbGRWYNTzqvb5oIdNNZNGMmWspZJo8AVYNOvdd/dzrpKXO/YZlmeIUfPlfq42Tn/gTZpwCppGpIqZtYdcEXf4tlDInGPJ10tUAAxOz7RSmW71R8t+5sd7tmtaQ7OsHYGqxjBmAnT9Of6PB1uk6yah3WcNO9iTV5ujhycOkUimmpqaYmlINvxZG7qBkvGLcz393fRuA26bC5Cq9hMPT9ASVpHHo0CFCoRBiepq8J4BPjBMSYSqFPLVKGSEEobYEvtokltWGEHXMkJt39r+TGe8MidhZxmUeYTcojylZxKoXmK4F8VrOnkC/yvBKbt2GFILpEafvjNOsSwhB3tnMjTQu7X0yMaQ+fNoHtrA5rLI2GiJMVTSoiCrl4SwHJw9SNWIgLSqVEU448mfTuafn95VZSHIHSAumT88eUv3hJcGgaqvQmCyrualhN67SBXyeKoXMlR31+KkiHoKMp1U67KItCG4ii2bMXMtEpnGn2L/VsszN4oZlmR/+DyhOwLv/AumLzY7Xu1CosKN4BtHoJeCOMlE8y0Urwlap9NdI6hThThU15L/z7RXp3a5ZXWKdXZguF+lzQ4uf0LYV2b6XTM1PvGPptLr5RDwR+iP9HJo8RDKZxLZtzpxRkeTCyB3Adhn80ftCHEqWqXsMkudmsMwddEXGiRWPYxgG5bLSyl35GTJmCJeYImgHEAhyaZWTnowHcVHHsuKYPuXw37nnnXgtLwXfdzjqi5PIHOfsCxNIKSnlMmQaCTVntOsO2Kl61CSdHjPTTv7/8LRKHjgwNMXwqHKukfqlDjA9dAaEILmpn61xtTFZMduwkRz2n6ZwdpJD6UPEQ6pPf7F0hmMLnPtUoUbQY+JfpPMjKadALn1s9lCxqGwJBpqZMiVcST/CqkE5QyhoXTFyb9QsRk/N0Bbr4Pz580gpFx+3d5O5LGPmWiYyjR0Cl0/tSdwk1rcs87rfhp/9e+i+k3K5TL1eJxIKM2ZVeWDmFXymSg876skyLiP0WQZT/ot0e2uEA14amQylDdy7fSNjulwkunuXjtyBwqY30pAm8YHdy77ubcnbZp07wMmTJzFNk3D48n7kXzr+JV6OZPjgN20qXQm6R8r4onfjNWuMjDxLR4eSWZLJJL5ygWkRRohJDEy8ZoDcpNOtMap08IaVwAwoDTkWirGzvJOMeZShhI9U+iXy2TqT5wsUsxlyzhBtHv4/ZiPGRI/K/85mVa77ifE8Ub+bhg3/9JIamB2tlWGeg58YOkO8sxuPz09XIo63XqPgUimUBwMnEGN1xnNjbE6qlhyl0lmOF8v4DYM+n/o2NFmoLq63g0q1RVyyqVosnkQIk0CgX/3ek2VcKb8aag2EwuKKzn309AxWw6Z/y2ZKpRKZTGbxcXs3mcsyZnwx1Zl0ObLM2EFo331ZWupKsr5lGZd3tutes497oO5h3At35I/hcSepW2VebuvGxqStHmUscoaeepLMv3k/J1/zKFjWrVOVusFIbro0Y6ZRqzE1co5Tzz/L81/7W773qpJG4nuXX5i2N7mXyfIkdkA9d3Jykng8jrGgS2ilUeFThz7FXYnbee0Rgen10j8B/uAWAC7mz8w2uUrG4wSrJSzh5qJb/a0HzDA5p5o04VdSiSVTuMJzG54P+B/AsE1G+4+TnDqIQHL6xQmK2Qxlr9OvZXLOabq9PoKGi2xZpTAeG8uzuyvCj+3u4KUz6rywbV8iG0wMnSHVr2yOxWKEqmXybvXBcSIwjGELtlc2s6f9XtxuNXLveLHCjqAPw0kznCpWF9fbQTXwivVdsqlaLJ3C7+/HMDzIuo2VreJO+iHvOPe454qyzPmj0ximYPftKvIfGRlZfNzeTeayjJnlTmSSEsYO39TNVICb97GxDKSUXwO+tn///huuMmh+QHhnBOMhN4PFYWrmWyhaeS6a7bRbErftoRQ5i6/cQc//9e8oHzoMtrWhe7dvZNr6NnP0h9/jyx//TbLjo+Qm0+qN4+ALR9i0dx+d25c/g7bZq/xk4SShUIhCobCoJPPlE18mXU6rAeB3/CHWyBCuOoQyRabqfqQrx6b2BAeAACYGEsPr4bA/zf1lCHpjs5F71FXGsr3YxDDjcxkpvW29bBrewtn2Q1ihEElzitMvBSlkM8Q795JrtBMaP3ZJhBYLhMhVJrFtyYnxPO/e38dbbuvi9/9aRfORpnNv20qlWCCXHmff61VPQLfbTaRWYsbbBTXIJErUztd5JH8Xe9r28OqFAUqlIY6VKzyWmOvRPlWosSmxyBD0JqmdCyL3U3OVqVNlkOBKzovc20JUXylTr1q4vZdLPSPHMnRuidLd28kHP/hBOjs7YUw52LGZCvsW71O24szPmNnX63RGXc5EptxFKE/f1M1UaLFzX0makXs1bVONemgrTjHjClOu57jgjbGnUQUCGMmTGNZdRJ94gugTT7TWaM0N0b/vTl751jeolUt0b9/FnkdfR7yzm1hXN/HOHnzXUW28I7EDl+GalWYKhcJlm6mleolPHfoU93Xexz2d9zD1+GOUf/8TABinDnMutom+yEV2hwvkH38cj3QhAXfIy3OBAvdPQzyYnNXcg8yQb6gcd7Ntzmkmk0l2HtrKUOQ0Q20m7dOHOGIlqRZchJNtZMZ6CSxw7vF4gtFchqGxDKWaxY7OMPf0x+kMVTiK49xnVEfFC8dUr/MOJ3IHaKvnORbpwJ+HSCjKc6FDPJa/F7/hJxAYYGjyABONxmwaJChZ5s5Nl38Azv0i29UgatvCxqJcHqY9pT5QZjNlUgG4qFIIQ+1xoEwhUyHeeWlpfrlQI30+z31vG8A0zdlWBB1L9Ze5ifS3Bfjcz9/Lvp55e4aRHjj7/Ss/cRU2U2G9a+7zmJmZwTAMJjMN3HYdV7lKwBWh1Cgx6YqzyYKCJ0siPInXd+0j5TRrj44tg3z4jz/D+//LH/DWf/PvefBd72fXI4/RNbjjuhw7gMf0sDO+85Le7gsj9y8e/yLTlWl++U7VryT0mCp+q5vQOHqcbH2QQLCAa/RHvOY1r2FmVFVdeiJenvbXgToRz5zm7qtNkq8rCcfVPvdayWSSYCNIqHY3J9syxI9/BwSYnu3EOlJkGr0Y2dOXzAlNdHZjG4IXXlD9XHZ0hhFC0B13pjDZ9uyG36Fv/yN+f4Du/sHZ53dWJik6pf9Rb5QnI88TqQepns4SCGzhTF1F6M3NVMuWTBdrpBZWp84ntQMaFcieo1QaQkprNg2ynm6mQfocWUYQ6nSKCxfR3UeOZUBC785LP3CTzri98dzqae4u0+DR7Sni8yWp2YlMVyhkGnPm+3Ys/xvl9bC+Nfd55HI5Qv4gaRMGS+coN0J4zQBpaYOEhOVnLHyGbo9NJDl49Qtqbln2JvdyZOoIbW2qwdZ8516sF/n04U/zUPdD3Nmueqd4tmzBvWkTVRe4Tg5juXZjGJJ8+l8AmDmvnKkr6WXGJTDMPEHhno3cXcWLlG2VaWF2zWX2bNu2jXe9613c1/YuzqVsPKUMbUkwPNto600x3ejFsCowM7fv0LZZZX0dPK0yZrZ3KOnA5SrjtiUVEYXcCPmpSc68dICuoQvUDjnOplaiu3wRaQQwMAi4AzwfOkLDY1N6aYJAoJ8LTjuppnPPlGrYkss7Qs4nuUP9mz5OsaQGeMw1DCtjhD0YXpeSZYIpQm0qWl9Mdx85lsHjd9G++dINbtMQpELeVdXcFyXSrVI/HYlpUcYOQXwAvIsPDV8p1ncq5DxmZmYIuQKM+wx2F09TtlSmwhnTQ5tdx2P7GA2fodNtk9q+/OwJza3HbanbKNaLeNo9tLe3z26MAnzh2BfIVrN85I6PzB4TQhB+7DH8NQgNpQn61d/XTPEE2DYFx7nbXaoC1AjY+KSXYjZDo5DFKE5Qt9uR0sKcp2UbhsGePXu4u3sXZ52N2rjrAoaZxHTFyJlOGt3Fl2afk9ymHOmJ6Qp9CT8hp2VAoV4kLAXnGnHyE8Mc+u4/I6Vk00xpbuBJdphN1YsgDALuMCF3iLdseyvevQnKR6bwu/sZoY+QYdPtVb9Ls4Bp0Rz3Js10yMnjFIunAEEgoH6fxmQZd8oZxlIYh1AHoZi61uKR+zQ922MYi/SI74iubq77oiynkGkVNlNhA8kyuVyOYMPDRNzDbfmTVCy143/Im2Cfpf4A0+GzJA2DUIfOadcsTbNS9bw8z0c+8hFCjsSTr+X5zOHP8Jre17AvdelmWOixxzAluGoWA1XJdCXGhN+AyePUJtI0hEGmy4NLuHAnwriFitryQypqFkY7dZlHmJc3uhpsD3PGfgO2gML4NwGYHIF6fC91EYQzcxpvoLcXf63OUMXFjo65yDDXKBE13EyIJDPjQxz67jdplwZtu/dgBJzN0MwwW6qq4tdthCjUC/ynh/8T8bv7kDULMRRkhE30u/MIJ1Om2Xqg7UqyjD+uGmSlT1AsnsTv68M0VeTfcHLc1WKMQbgD023gD7svc+4z6RK5yQp9uy4vKAPojHhXtQXBolxtIlM1rwaI3OTNVNggzt22bXK5HP6iyWTcYF/+GBVLfb097QmySZo0jBre4BSeahLTdLfYYs1apj/ST8gdmh0I3eQvj/4luVrukqi9SeDuu6g6mR2b0uc4O7OZfNiE8z9CZrPk3QHGIpKYL4bZ2YUhlNSTO6eKe0wjQdnOX3ZdUMUylfpWJhMeyhcOYjUucv5YkXAqyLh92yUbeGYiga9mkxZBdnTOc+52lajpJdzeT2ayTGF6it5zowTvv3/uhTJDbKspiUcYQbJVp4vlQBQz6qH8cpYRsZk+Mdc7ZfJK1anzcXrMlIqnZyUZq1jHLjVUjjtAYQJC6n0bivsuk2XOH1VVtr07F9+8Xe0WBItytYlM468C8qZvpsIGce6lUgnLsgjWPYx7G+wsDmGjNmXSSKI1DxPhYbo8Nm6rq8XWatY6hjDYk9wzO4MVYKY6w+ePfJ7H+x6fHRA9H+F2M3p7FxKInT/F2ZlNyIBNfeQpXMU8FZeXi94ScV8cMxlFCC9uw8vMBVX+7xYxCo3covYkQx5iATfZjgE603WmwseYGiniC7oYKjqj5LIq4haGQcWXwhYG29vnNpVzdoOwy8/27bs4mW3DcPtozxYIPnCpc+8WBTyNOhaBWecuDIH/9nYuDs2QJ0SPfWr2KZOzssxV2jukdmCnT1AsnZnr4T6m8vFdqYDaFC5OQEh94w7FvZdF7iPHpgnFvcQ6Fk+77Ij6yFcal7bhXW38cXD5l5Zlxps93De4LLNSG6rN5welj3I1TcLK4RJxylYJn6jhsQKMRE7Q5avg9fZd5Woajcp3PzF9gqqlHMznX/08+Xp+0ai9Se7enQhAHHyJc4V+dWz6OXyVInWPl0wtS8KbwIyqKDdohsmPX0S6o7hFhFw1NzsXdD5CCAZTIS6Et9OVgZc2PQdAOV/nfMWJAOdF71kneux2O86xUSUnJBF3COFr42wxjrtkY/r8+PfNkweyw5iJTUTqVeoEyTr95wECd6Q4E1BSTHvt4KydU4UqLkMQ9V/l23ByBxUjj5T1WedePZUFA7z9EShNgd2YncCkIvc5527bkpFjGXp3JWYloYU0x+21VJq52kSmsUOqkjV685PxN8SGajPHPRwMkyqqcnSvGWXGKrPNAIFgLHyGDm+VSNvN6+Wg2TjsTe6lIdWYvmwly18e/UvesPkN7EjsWPpJ99+JDdTPnsFmECkFU/YU4WoR6fOTqWZU5B5RUW7C6yN38SxWeC9CmBTqM5Tzi0fv2zpCHHQnMSTI2kV8XZAZKzHd2ETVSGCdfHL23KlIN4a0CJecwfPFSfKGIOKNcujVMQSwY3SM7ODuS4fBZ4YgtpmEtKmIEJlqZtaJu7uCDHUp59kjT1GtKmlmslClLeRZ0uHOktpOMaA2d5tpkJWTGTx9EQyfay67xJmdGop7qZUb1CoqCp88n6daatC3hCQD85z7WpBmluov0+zhfpOGiMxnQ8gyzcjdGEixo3QWW4LPFWFS1umvG0hsJkLDdLklsd4rvDk1GodmperhycN89shnKdVLfOT2paN2gLbUJi60AQ2L3VaN6UoHk2Ef0VoBdzjIdGVaOXcnco95/OTKEsujNvhLjRz5qclFr701FeKIV0mNOye8HI89T2asxN1v7me4uJfaq98ll1aNwi7624nXs8xcUPq5XZwgbxiEvTEOHzhEvz9DbybDd/x9c422pITMMMT7SbkEZTNCw25QrCvpRAjBUK+fSKNOlCylkpKTpgq1q+vtAMkdFANqTyIQ2IJdqlO/UMC3zansbPZAbzr3hJMxM62i9/NHVYXtwvz2+XREV7+QaVEivYvLMralNPdV0Nthgzj37Pg0pjQYT8DuwmnGG2ECrggT2KQqLgqBadwCYqYkENGZMpqr0x5opz3QzvfPf5+/OvZXvGngTQzGr1wfkfQnOTCoIrLdU2c4PdNPOWLgtWr44jHytbxy7mEVLUf8cWZqXiyUFFFszFCYXty5b+sIczGYxBKCh6baecr7TwD4gm7aHnkLfqb51n//Wy6ezHDWDNNemZxtqlbIjSCFwM43KOZybLNVG+Mng/18+6gTMRcn1eCP+Ga6PC6qbuV0M9XMrA1nggZbChYCZp27ityX4dzDnRTDPry2H5crROV0FiR4tzmRuNNXpjlyLhRTjrqQVY76/NEMbT0hApGltf05WWb1CpkWJdIN+VHlzOczdRoaZe3cr4Xs2BRB6eVwfpjdxdNkGknchpc0klDNy0ToHD0EEQL8Pq25a5bHbcnbeGb0GapWlV+8/Reven4qkOLJ25Vz7z1ziBOZPvBYWAnwOVO/Et4EwmVghNwE/J0UGl7qDRWNqsh9atFrD7aHsAyTyUCYLVk3rrhNOZrl9Itp2h5WLX83+w/zpT94iTHLRXdxgslh5YBzjv6bHU4TTqaIzxgYPheVTVv5839xholkne6a8X76An6kqTJtZqrqW7GUkuPVKtulF2F5KZZUK+TJQu3qm6kAQlAM+wlWlcupnswivCaeXiejZxFZBlSue71mMXo6S++uK7Q4AIJe16qP21uUpQqZVnEzFTaIc5/JzhA0/Jy8eJZtpWHKZZURk5MmBgbDkSP0GiZmo202v1ajuRrNfPe3DryVLdEtVzlbRe5jbQaWx0Xi3ClOZ/vJZjqRAYnHpyLyuE85KDPqxetrRyKolAIYzCANuWTk3h31EXAbXAy14Z6Y4v273s+hyFOMnZmhIDsgPsCd285ibFUZMknbJDM2irRt8gVVrZobTrPv8TdSGTUJbvLyc6/ZynND0xwcySq9HSC2mf5ICNtQ18lUVOQ+VquTa9jsao/gKXZQzJxCSqna/S4jcpfSpuhpEMyVkFJSOZnBuzU2l9dfGAdPGDyqOjUY84KAwnSF0VNZ7IZcMr99Pu1rIde9uVm6UJoZOwSGWzVSWwU2RLZMvlLA53Phro7hlhbVqvqa27CVxndubJffAAAgAElEQVQudoxOTwOfS0ftmuXzaO+jDMYG+aXbf2lZ53tNLxFPhJnuCIFchpGZbr729bfhHjGoCtUVcda5Rzy4XUpDr1aCmEaaYDyxpOYuhGBTxMXZSBdMT/Ounh/nYvtx6uGiygff8lrM80/Tdr9qmRDydNNo1BkfHiFXUm0OzLqH7Tv3Us9ZBDpqvHt/L0GPyWefHppz7vHNDMajSENF1M10yOPOgI59g214yl0U86cp1iyqDXtZkXulcgFb2ARnclgXx7Ey1Tm9HWYLmJqYLoNA2EMhW2XkaAbDFHQPxha58qV0Rn2M59dA5A6XZ8yMHVKOfRlTwVaCdZ8tU5suUbSrNKw8nR6VaVC31LCBU8Ea9rY0FXeB9kCBUEzr7Zrlsy2+ja888RX6IssPClL+FGd2xTCQbCpM4Hd6q2dcqhNjwqeiTzPqxagaGKZJo+zF5c4TTiSXjNwBevw2x2ObAfCeG+dNdz7GZ/b+FnZ7EbY8CtUcxeHnCXoMbh/+IQBf+6MnmcwoeWDLttsRr6qGYsFYmrDXxb+6u5evvzJKJX0GginwBBlMxLAdWaYZuR8rKIe5MxEi4OunJsZIZ9T7rS149chdtR2AYMmi8oqSdGb1drikgKlJM9f9/LFpOrdEF23/u5COiI/xVkfuzSrVhRkzq9R2oMm6l2Wmj40hhSQ/dYF+V5aqcCNIYEubbE+dwla1C98RyBOMa+euubmkAikO7FHO7s7MWaJV1Wd8MqTeanOyjAdZsejashPTDmH6qoTakktq7gCdrgrHnAClevIk797+bmxsnjz/5Owc1fDFp9nREaF/VOm70ppmOq9kmbsefiOlZ3+EKxbEEyhBaYqffWAzNctm8vwJiPcDEPW4cdtuwJiL3EsVkm4XbR4X4Z5dICRnX1E9bbpiV5c6ZxuGlSwqp3OYMS+utnnPK4zNFjA1CSV8TI0UmDxfWJYkA2pTdSJfxV7FcXuXMVvINM+5FybU77hKm6mwEZz7aeW8qzNT9NdHGPUmcbljFK0SWzt9nMycJNoIETSZHeul0dwsUv4UxyJ5ME32TJwiVi1QdXmY7hhASIi6VWMwM6I+ALb034kpPBCwCCfayE9NLlrIBJC0C6QDMaQ/QPXESfoiffSF+3jm4jMQbEN23sZg4QA7uiL44nH8ppu+nZKck/Gy67b7KP7oRwT2bVdp1jMjDLaHeXgwiZEdxo7OtcKOSxsh5qpUjxUqsz3cY4Mq+sycPMSWVJD7Btquui7F4ik8nhQu20d13INvW/zS3Pj8+GwBU5NQzEsppypgr7aZ2qQz6qNhSyaLLcyYEcIZ2jFPcx9b3c1U2AjO/YL6GmtKi22lITKuKF53mJxd5o6+Ns7XztJnqzeU36/7uGtuLslAknR1Cs/mzQxkLhCrFqj7AmTaBojZFqbTwbGZ694RUpH4jN0g3JakUatSKRYWvXa8NoUUBuXuTVRPngTgwe4HeW7sOepWnVLPw+yTx9mTcuFKpYgIg+GDL1GUVQwJruFRrMlJgvfuVxd0IssP3NdNu5zkrCNnArQJiRQhstUsUkpOlCqzbX6DEZUSusk1ys/vDWAsox6nOX2pFnktsuHGO19vrxZUGmao45LnhOLq9VSL3wjLYXZox1pIh5wfua/SgI75rGvnbuVrzOTVZmzfnm201WcoGj4C7jDTdpW7OrqZdI/SZ6g3kt+/uZXmam4BUv4UdbuO6547aS9nSFRmkMEQ0/4YcVvCwS8CSpYBCFQcZ1QqE0o4QyqW2FT158ZxYTGR7Jl17g91P0S5Uebl9MucDu/HKxrcLY7jSiUJ1RoUsxkqLogYbso/Um0Lgo++Xl3Q0YQf727gEjbfGvPPvlaH28Qyw0yVphip1ila9qxzN80Q1XqEmdAZTj3zDY4cOXLFNZFSKuceGKRqPADYeLfOc+4L0iCbNAuZenfEMZbzCcIaqlKN9l4euUd6IbA8eWklWNfOvTo0w6Q1CbbFpq3qq2GlahIwlXNvZKs0zDpdLnCJCG738j79NZrrJeVX0W9l5yZc0mZ75jxmNEqmnifujcGRvwWrPivL1M+rKH14Kk3YGQ6SX2JTtTyTod2scTrUiTU9TWNqins678ElXDx14SkOyJ3UpMlA7gCuVIpgroBLWBRMQcTlp/jss7j7+nBv3QumB2ZUszEzOwTA9ycCHB9TnSl7fF4argjT5WmOFdS0pKYs852jE1wsJMgFz7PJ38muXbuuuCbV2jiWVSAYHKRSHsQtTmO663Mn5J3q1PDikftSXSAXozO6Rpz7wkKmVd5MhXXu3BsTZaZlBqPRIOpRbxIrG8Q0XGRkjcPnVWZAp7eKX+vtmlUg6VfRd6ZfRWheu0Gqp51MJUMiNqAaZJ3+LobXRPhM7KKNLauMjI7hDaoMlcISm6rFbIYev81Bt/oQqJ48ScgT4vb223n64tMcSVscMbbjO/8vuNrbiUxMEfba5AyDiCtA6bnnVItfw1AZHU3ZwClgGjM6+dwzQwD0h4PYRpjpanY2DXJH0IeUkv/5rVfwVDwEA3lem9uJqNoLTb3UbidTxu8ZoJYN4zNehqmTcyfMRu6Xau4dAxEeec82dj6w/E6us+P2Wp4x060aoRUmoF6GyROrKsnAOnfuwUe7KBpVQsEA3qljjHg7cGdV8cWUqJMJjSGkoC2UIRDSkozm5tMeUBkf4wkT4Vcyh2/nTtU0rG07+BPzpBkVvQsm1UyC9DhCGItG7o16nUohz+aIyfNOL/jK8RNYjQYPdj/I0emjvDpxgbPh/TD6Cu5EgEi5yk//2q+RNwxClhu7UCBw/33qgtHeuVS9zBAYLu69fS9fefECM+U6A7Ew0gxRqOc5WijT5XUTdbv49uEReqZepF6N4XJXMEWZwjOjV1yTYlE5ctd4O0iB13gJ0ifmTlhCljEMwb7H+paVAtlk7Yzbm1fINHFUVazeSs79RouYhg++jGWYpDq7iKSPcDQ4QKOm3lzTHnjfHe/mPwx/GNM/rTdTNatCM3JP16bw7VHj9sxkG9lqlpi/Dfb+JBz7B6jkZp271xhDGAYXjr1KMB5ftJCpNKMyXrYkA2Q8IWQ0xviRg/zpL/4su4oqsh0qvkS+6yFA4nU7Ukd6mJxhECiq6Hp2OMf8yD0zDNE+fubBrZTrFl8+cJ4tkTC2EcbG4nh+mh0BH5Zl8Y9f/TsiRpV77nmbeu7eMvkfjGA5fd0Xo1g8hcsVwz4rEG4Dr3kMJo/PnZAfU5WbK6RHr41xe/MKmZqbqauYKQPrvIhpYvgs0uWmb1MPifww532d1Ez16Z9NBhFpP/fSDkIS0JupmlUg4A4QdAeZLE/i36OGetQiPmxpqwKmfe+BRgWOfX229a/bmKBjYCvnXz3kFDJdLssUs8q57+iMghCUezZzevgMtVKRu3Y/QtgdRfpOENx6H3hCeKoqWrbS58iZBr7JEt7t23E5ur7qOX5RacKZIYhvZm9PlP2b43z+2WE6vR5sp0r1TGGKHUEfn/ni3xGpT9G19yG2blEfEsadVWTdIv/d80uuSTNTpnoyi2cgikj0QXqec3dmp65UG9w1N25v7BB4Qmoo9iqyrmWZHa99AwhBhzmDKS0m3TEMd4yGXSfQmyRzMosdVD2tdaaMZrVI+VOkS2l8e1WkVnS6QMa9cei9RxULHfzibORueov07dnH2KkTBGKxRSP3YkY59+29SaUpt3Vzvl5m8747CUZjbAndiRk6yfauBGx+EHP6FQDszAVyhoF3JDMnyYByPtJSUXN2eLaA6Wcf7Gd4qsRLp6dwCTXxqNbI4ZkYZeTEIYbMHn7+HY/h9/chhEnNdYHg/k4KPxqlMVW+zO5mpkzAPUAjXVYtB1I7lQbdpDB+2WbqjdCxFsbtBRLg8s059449aq9jFVnXzr05pCNRVylHZdOH3x2mZBXY3N5OZSRP3a/6amhZRrNaJP1JJsuThH/sx+j4P3+L7DbluOK+uIpO970Hznwf06OcoStg0bf7NmyrgRDGoi0ImpF7LJlgc1uAU24/ZbfJtt1qklJE7sFw5RHeURh4FDEzhMtvUSmM0RCCQN4ieP8DcxeMOi0V0sfUJq/T1uBNezppD3v5i2eHCRuqiZdh57nwo6c5b0V5/HWvw+syMQw3Pl8fxdJZIq/fjDAEM/88fJnd9foUjUYWT17JFL5tcUhth6lTYDkZM/nxy/T2G6EjsgbG7TULmWZGnEyZ1dXbYZ0796ZWHyoMUTJ8mHaDoBmgYBXZHEshp8rUAhMYhh+PJ3WVq2k0K0PKnyJdTmN4vSTe/34yDfV32uwrw23vBiTumacBcEUbdO/YjRAGtXKJWrlMtVS85JrF7DQIQSASY1t7iIlqDtOy6fGrBILyjCosOjDxrOozA4QHTHJVJfEEa4LAPfvnLhh1ZINhZUMzcve4DN533ya+dzxNzLOZyd5PUvPdjr9qccy3m/fcO/cNOBjYQrl0FjPiIfRwD+VX0tRGLh3y3cyUcY2lMMJuXB0BSO5QmSTTTrvhwtiKOvdmrvt4rtWFTD1w7lmo5bVzv1aakbuZPcmx4ACxUpawGSTfKJEMBThTtZmJTxPwb7r6GDCNZoVIBZQs02wj0Gy+1ewrQ3IQeu7Gc+HTdMQ/hidl4g0E6NiydVZvXyjNFLMZ/OEIpsvFYJsPf+ki7bki9pCKlocnXATo5amLT0H7Hgi0EexpULCUs421b8IMh+cuGFno3Oec9vvu24TbFMgKSMNPuFbhm7nNfOi12/G65jJXAoEBSuUhpLQJP9qLEXQx849nL2mf0HTu4lQY36DTciC1XT04eVxF76Wpy1oP3Aizue5rQXd3+vrQoZ37NdHT08MjDz+MK32UI6Gt2BlJ0PQzY5WJ+l1MT1UhOKElGc2qkvKnqFgVCnVVezFdUSPi4t55xTj73oMYP4S7fGBWb+7dfRvZceUMFlapFrMZgjH1/O7iCD67Srd0UT15kkrdYmiqyJbgXbw4/iJluwoDj+KP5ShI9Q0gObjnUiN9UbXJd+GAuj9vs6897OPNe7sYTasMGF9N4A9FeO+9l76PAoEBbLtKpXIRw+ci/PgmqqdnqJ6cG6xdLJ7CNIIYmQjeZsvepOPc08dVHjhc1jTsRphtQdBq3b2ZMSMMaL9yodfNYF0794GBAV53zy5clQyvBgdpZGIYwiBr1/DVJVajgTTHtHPXrCrJgJMOWVab+ZlKhrA7jNt0z5205ydBOFGwI0ko3V1VNOYXZMzMd+7izIuUDS/Bth6qJ09xcryALeH+rvup23UOjB2ALY/iMiuU/cpBt+/df8n1lCbcA1ZNDcnwX1oF+oEH+yk56ZPTk3V+8dGt+NyX5puHQmroxEsvf4AzZ/8fjH01zIRPRe9OV8Zi6RQ+exMCMde/3RtWrz15Yt7s1JsQua8V5942CJ7Aqr/8unbuwGwO6ZHQVmRFaZoT0sIoWrj8WaCmq1M1q0qzBcFkSUXfmUpmTpJpEkrB4Ouc28q59+xUujssIstklHOvVyqkD7/A6eBWJpO91E6f5tgFJfu8YesDeE0vT198GgaU7p53qeslb1vg3GFuYlC8/7I0xLs2xeh3+rRH6pL33Xt5gBSN3snu3Z/A6+3g7Nk/4tnnX8+5+z/OhOvvmHnxmLK7eApPvhtXR2C25YJapB2XRu4rmC0T8roIeV2tl2Wa69sCvR02gnN3Wmme8fcipHoDDZserHwdT6iZBqkjd83q0XTuzch9ujp9uXMHuP296l9H7/YGgrQPbMUwzUsyZqSUKnKPJzh14FkatSrTXXs5HepA1mpcfPUkXpfBjvY29nfsV849MYDlaiPnpN/FwoskFDQ3VeOXpwkLIfjw3h6MCyU+vLMLv2fxKtGuzndw911/xUMP/oDBrb8BXpuJXf+LF2bezosv/iy1WhrXWBLfwilKyR0qcm9q0iu4oQrQEfGuHVlGO/frZPwIk/5OQlYJr0s1BhvyhyhNV/GE1ZsroJ27ZhVpyjKT5StE7qCkmQ99F7rvnD3Uu3svtmUzM5mePVYp5LGtBsFonGNPfZ9wW4rEwA5ecqfwbhvk4kiabR0hTEPwQPcDnJk5w1hxDCu+b9a5h9yhy18/Mi9yX4T33dXHn97Wzy8/tPWqv7PP183mzR/mvvu+zp2dXyRx9i0Us6fVY9mBS6cugdpUrZfgwgvqfnDlNHdQ0kzLZZn23XDPB2Hvv2rJy28A536YU8EBuippwoaXml2lEoqQS5cJd17EMPx4vd2ttlJzCxF2h/GaXiac2aWZSmYuDXI+QkDP3Zcc6tt9GyDJjs61i23muLt9XoZeeZGdD72GwY4wP5RxNv/9V3nSaGd7h8qEeaj7IQCevvg0xq43qr4ywotpLBJ5z0bu/Yv+Hi7T4O23d+NxXZubSOzeT6/xIbb88PfYm/0LArldeLcsqEJP7lD/nv0BBNpWfK7omhi3Z7rhrZ+AWGuCy5vi3IUQQSHEASHEj9+M689SL8PUKQ4GBojmZkgKF+VGDl8kwUy6jD91mHj8fgzDdVPN0GjmI4SYzXWXUqqmYd7lta3t2an60RSz07PHmtWpUxdGsC2LnQ89yrb2MNWGzaELM0zkq+zsVM59a2wr7YF2nrrwFK5HP0hu831ElurZ0syQabt6ZH6tRN/Ujyzb1J+z8W6OYCyUdVKOc8+eW3FJBtbIuL0WsyznLoT4tBBiQghxeMHxNwkhjgshTgkhPjrvod8AvrSShi7KxKsgbQ4Et2PkqrQZHoqNPOFQgFLxHIZ3lETioZtuhkazkFQgxWR5knw9T8NuLC7LLIIvGCIUb8Oq16lVVAVr0WkaduHoYdp6N5HaPMBgh5JZvnFIadY7OpUkKYTgwe4HeXb0WSxhkAuliHiX6N20+UH46f8NA6+9gd90cTzdIQJ3KKnlkqlLTYJJ1SETbo5zXwvj9lrMciP3zwJvmn9ACGECfwy8GdgN/JQQYrcQ4g3Aq8DECtq5OONqAszB8DYqBZOY4aXUyJNwu3BF1UZrW+KRm26GRrOQpD9JupSeLWBaVJZZgtTmfgCy4ypNsJhRUfz4mVPsfOhRhBAMtivn/g8HlXNvRu6gpJlcLceRqSPkajkiniWG1AgBg6+/aT1PIm/sxzsYI7BvierwlEqlXMkCpiZrZtxeC1nW/6qU8gfA9ILD9wKnpJRnpJQ14K+BJ4DXAvcD7wM+JJq5XQsQQnzYkW4OpNPpxU65OrUitXA3w75uikU/QcNH3iqTwCDYcQTTaCcQWPmvnBrN1Uj5VeR+WXXqMuh2pJlzB18GlOZumErW2PWwSnGM+Nx0RLxcyJaJ+t20h+fSDO/vuh+B4KmLT5Gv5Zd27jcZV8xL6oO34WrzL35Cs1J1BQuYmnSslXF7LeRGPrJ7gPl9PkeAHinlb0opfxX4K+DPpJSLjmmRUn5SSrlfSrk/lbrOvi/3/xL//DPPIIWBqKs3T8auE21YBDuOEQ0/qNsOaFpCKpCiUC9wsaA2Rq/FuQ/crjZZR46pb6bFbAaEoGv7TqLtc1FuM3rf0Rm+5O885ouxp20Pz1x8hlw1R9gzr+3AWqK5qbqCBUxNOtdKlWoLuWnZMlLKz0opv36lc250WAfAaDEPtsSF0hUvImlzncb0lGjvfPS6r6vR3AjNoR0nMqq1bcK7fFmmrVdlV0yeU421MmOj2I0Gux669O95W7ty2vMlmSYP9jzIwfRBpqvTLYvcr0ozcl/BAqYmyZAHQ2jnfr1cAPrm3e91ji2bGx3WAXAhn8WXL9GcsnjOcBP1voKUglTq4eu+rkZzI7T7ldTQdO7XErm7PB5Mt4fcZJpGrcaM029m+/2X/j1vnRe5L+TB7gexpEXDbhDxrlHn3v8IPPLvlO6/wrhMg1R4DQztaCE34tyfB7YJIQaEEB7gvcBXV8as5TNSKBDLZuhxpoyfdXnxB1/BKm3B41mZsV0azbXSLGQ6kTmB3+XH5/Jd0/OD8TjSthk9dZxKsUC4LTXbW6bJ3ZviuE3B/s2X/53vS+0j6Fb92Nds5O7ywut+WzUxuwl0roWhHS1kuamQXwCeAXYIIUaEEL8gpWwAvwJ8EzgKfElKeeRaXnwlZJkLpRr+XJFOKalYRcpeE1/4FK7GXdd9TY3mRmm2IBgvjV9TpkyTeKcqvPvRV74EUtI5uP2yc3Z3Rzj8O29cNHJ3G27u61STl9as5n6T6YisgVmqLWS52TI/JaXsklK6pZS9Uso/d45/Q0q5XUq5VUr5n6/1xVdClhm1TSha9EibUiNPT2ICYdgEfPdf9zU1mhsl5o3hcornllvAdMnzO7oQhsHwwZcA6NuzeH+S+f3VF/Jg94PAGo7cbzKdUZ+WZdYrlpSkXX5KZRdJ4abUyLGzYxi77iWRuPvqF9BobhJCiNlN1WvR25uE25JIey7RLNp+7ZuOb+x/I+8YfAe3t99+zc/dCHREfOQqDco1q9WmtISWOvcblWUmanUsaZCv+YkaPspWnp2dxymldxBtvzWjFc3aoSnNXI9zDyXaLrkfjF27tBPzxfj4Qx+/dSP3WzzXvaXO/UZlmYuVOqLYwIeBx/RSkiUSwTTFsd1EU0sUTmg0q0TTuV+P5h5uU1F/3x41AHvhZqrm6qyZcXstYl3LMiOFMqJQp8P5NaouNdaslrkNX9B9padqNDedVOBGInfl3GcmxhHCIHAD+1K3Ks0q1XTh1mxB0NJ2iUKItwFvGxwcvK7nnxmfwCg0aJeAgJo/Q6WUwB8Y0JWpmpYzq7lfx4Zq2JFlculxAtEYxmItezVXZCAZ5MjvvJGg99bsCruuZZnQ9ATJTJptjRIAdnCE/MQeoqnVn1eo0SzkRmQZt8+HL6iKlIJxXa9xPZiGuGUdO6xzWeZ1o0dJZKcZaFSwpY0IT1AZ1Xq7Zm3QH+0HoCfUc13PDzm6u9bbNdfDunbu0UiWIdlJj21RsQq4gnXK47uIJLVz17Seuzvu5hs/+Q0G49cnOzalGe3cNdfDuk6FPBvejY1BEhelRp68bMOuBXXkrlkz9IX7rn7SEujIXXMjrGvN/WBJFXZEzAClRo6J0hZ1Xzt3zQYgPOvcteauuXbWtSxzbHQGQ1r4PBFKjRxT2V1gQCh+bU2aNJq1SDihI3fN9bOunfvb23L88tm/wTDclGWOWmYHRsiNYeg0SM36J9GjJJ14V3eLLdGsR9a1c+/ftYuuTlWsVHMViNpuvDFPi63SaFaG7u07+dAff5r2/i2tNkWzDlnXG6q9u/YioipKr3ttYpYg2KYlGc3GIZJc+fmimluDdb2hatkWSVNF7tVAEC9CZ8poNBoN61yWGS+NE/fFsWSDkqk+IJKdwRZbpdFoNK1nXTv3c7kh/GaCUiNPXaqWA509oRZbpdFoNK1nXTv30amncVXbKDVyNCwlx3ToyF2j0WjWt3OXhcO4qnHKjTyNuo+iIXHfwo2CNBqNpsm6zpZ5ffev4qnFKFo5RM1Hyavz2zUajQbWebaMMWIhhEm5kcOsB6j71vUXEY1Go1kx1rU3rJ1PA1CRJTwNDzKoJRmNRqOBde7c62NKzrG9AiEERliP1tNoNBpY587djKueG5ZfRey69YBGo9Eo1rVzD+7fxah1Fun2qvu69YBGo9EA69y5+/ckeTb9NWwZpIIkEvW22iSNRqNZE6xr516rlKmVyzQaPrKmJB7QsoxGo9HAOnfuxcw0APWqj6xhE/XrDVWNRqOBdV7EVMxkAKhXvGQNSSygnbtGo9HAOi9iKmSmABAiSNaQOnLXaDQah/Uty2RV5D7r3HXkrtFoNMA6d+4ef4BI+2YQakNVR+4ajUajWNf1+rc9/mPkM1t48TvnsDwGXpfZapM0Go1mTbCuI3eAmckyDZ9BREsyGo1GM8u6jtwBZtJlyh6DWGDdf05pNBrNirGuPaKUkly6TM4tiWi9XaPRaGZZ1869nK9Tr1pkhSSmnbtGo9HMsq6de26yDMCEtHSmjEaj0cxjXTv3mbRy7qONuq5O1Wg0mnmsf+cuYNzWkbtGo9HMZ8WduxBilxDiT4UQfyOE+KWVvv58dj/UxSO/sBtLQFR3hNRoNJpZluXchRCfFkJMCCEOLzj+JiHEcSHEKSHERwGklEellL8IvBt4aOVNniMU9+HvCwLoyF2j0WjmsdzI/bPAm+YfEEKYwB8DbwZ2Az8lhNjtPPZ24B+Ab6yYpUswU64D6GwZjUajmceynLuU8gfA9ILD9wKnpJRnpJQ14K+BJ5zzvyqlfDPw/qWuKYT4sBDigBDiQDqdvj7rmXPuOnLXaDSaOW6kQrUHOD/v/ghwnxDitcBPAl6uELlLKT8JfBJg//798nqNyJa0c9doNJqFrHj7ASnl94DvLedcIcTbgLcNDg5e9+vNyjI6FVKj0WhmuZFsmQtA37z7vc6xZXOjwzoAso5zD/u0c9doNJomN+Lcnwe2CSEGhBAe4L3AV1fGrOWTK9eJ+FyYhljtl9ZoNJo1y3JTIb8APAPsEEKMCCF+QUrZAH4F+CZwFPiSlPLItbz4jc5QBciWanoCk0aj0SxgWZq7lPKnljj+DW4g3VFK+TXga/v37//Q9V5jplwn5tcFTBqNRjOfdd1+AJTmrjNlNBqN5lJa6txXQpaZKde1LKPRaDQLaKlzX4lsmZmSjtw1Go1mIetalpFSOpq7du4ajUYzn3UtyxRrFg1b6shdo9FoFrCuZRldnarRaDSLs65lmWypBui+MhqNRrOQde3c5zpC6jx3jUajmc+61txndEdIjUajWRStuWs0Gs0GZIPIMtq5azQazXzWtXPvjPp4ZFuSgMdstSkajUazpljxYR2ryRN39PDEHT2tNkOj0WjWHOt6Q1Wj0Wg0i7OuN1Q1Go1GszjrWnPXaDQazeJo567RaDQbEO3cNRqNZgOinbtGo9FsQHS2jEaj0WxAdLaMRqPRbECElLLVNiCESAPDSyqbLbwAACAASURBVDycBCZX0ZxrRdt3Y2j7boy1bh+sfRvXs32bpZSpxR5YE879SgghDkgp97fajqXQ9t0Y2r4bY63bB2vfxo1qn95Q1Wg0mg2Idu4ajUazAVkPzv2TrTbgKmj7bgxt342x1u2DtW/jhrRvzWvuGo1Go7l21kPkrtFoNJprRDt3jUaj2YCsaecuhHiTEOK4EOKUEOKjrbZnIUKIISHEISHEy0KIA2vAnk8LISaEEIfnHUsIIb4lhDjp/BtfY/Z9TAhxwVnDl4UQb2mhfX1CiCeFEK8KIY4IIf6tc3xNrOEV7FsTayiE8AkhnhNCvOLY9zvO8QEhxI+c9/EXhRCeNWbfZ4UQZ+et3x2tsG+enaYQ4iUhxNed+9e3flLKNfkDmMBpYAvgAV4BdrfargU2DgHJVtsxz57XAHcBh+cd+z3go87tjwL/bY3Z9zHg11u9do4tXcBdzu0wcALYvVbW8Ar2rYk1BAQQcm67gR8B9wNfAt7rHP9T4JfWmH2fBd7Z6vWbZ+evAX8FfN25f13rt5Yj93uBU1LKM1LKGvDXwBMttmlNI6X8ATC94PATwOec258D3rGqRs1jCfvWDFLKUSnli87tPHAU6GGNrOEV7FsTSEXBuet2fiTwOPA3zvFWrt9S9q0ZhBC9wFuBTzn3Bde5fmvZufcA5+fdH2EN/SE7SOCfhRAvCCE+3GpjlqBDSjnq3B4DOlppzBL8ihDioCPbtEw2mo8Qoh+4ExXdrbk1XGAfrJE1dCSFl4EJ4Fuob99ZKWXDOaWl7+OF9kkpm+v3n531+wMhhLdV9gF/CPwHwHbut3Gd67eWnft64GEp5V3Am4FfFkK8ptUGXQmpvtetqUgF+BNgK3AHMAp8orXmgBAiBPxv4FellLn5j62FNVzEvjWzhlJKS0p5B9CL+va9s1W2LMZC+4QQe4H/iLLzHiAB/EYrbBNC/DgwIaV8YSWut5ad+wWgb979XufYmkFKecH5dwL4CuqPea0xLoToAnD+nWixPZcgpRx33nA28Ge0eA2FEG6U4/xfUsq/dQ6vmTVczL61toaOTVngSeABICaEcDkPrYn38Tz73uTIXVJKWQU+Q+vW7yHg7UKIIZQM/TjwR1zn+q1l5/48sM3ZKfYA7wW+2mKbZhFCBIUQ4eZt4MeAw1d+Vkv4KvAB5/YHgL9voS2X0XSaDj9BC9fQ0Tf/HDgqpfwf8x5aE2u4lH1rZQ2FECkhRMy57QfegNoXeBJ4p3NaK9dvMfuOzfvgFig9uyXrJ6X8j1LKXillP8rffVdK+X6ud/1avTN8lV3jt6AyAk4Dv9lqexbYtgWVwfMKcGQt2Ad8AfW1vI7S5n4Bpdl9BzgJfBtIrDH7Pg8cAg6inGhXC+17GCW5HARedn7eslbW8Ar2rYk1BPYBLzl2HAZ+2zm+BXgOOAV8GfCuMfu+66zfYeAvcTJqWvkDvJa5bJnrWj/dfkCj0Wg2IGtZltFoNBrNdaKdu0aj0WxAtHPXaDSaDYh27hqNRrMB0c5do9FoNiDauWs0Gs0GRDt3zargtKX99bV6vZVACHHHarTbFUJ8o1mMs8zz19xaaW4+2rlrNCvHHaiiopuCUBhSyrdIVT6v0SyJdu6am4YQ4jeFECeEED8EdjjHtgoh/snppPkvQoidQoioEGJYCGE45wSFEOeFEO7Fzl/kde4QQjzrdPX7SrMrohDie0KIP3IGMBwWQtzrHP+YEOJzzvWGhRA/KYT4PaEGr/yT078FIcTdQojvO6/9zXll6t8TQvw3oQY/nBBCPOK0yPhd4D3O671niTX5mBDi80KIZ4Qa/vGheY/9eyHE887v0Rwk0S/UwJq/QFVQ9gk1JCbpPP5rzu92WAjxq1dae80tRqvLbPXPxvwB7kaVdAeACKp0+tdRZfzbnHPuQ/XPANUv4zHn9nuATzm3lzr/YzgDKlDl5I86t38X+EPn9veAP3NuvwZnSIjz3B+i+nnfDpSANzuPfQXVX8QNPA2k5tn06XnX/YRz+y3At53b/xr4f6+yLh9DtazwA0lUW+tuVG+iT6IGShjA1x2b+1HtX++fd40h57nNNQ4CIVQbjDuXWvtW/03on9X9aXYa02hWmkeAr0gpSwBCiK8CPuBB4MuqRxMAzd7ZX0Q50CdRTZP+P6e17VLn41w3CsSklN93Dn0O1X+jyRdADQoRQkTmadX/KKWsCyEOoaZ+/ZNz/BDKoe4A9gLfcl7bRPXFadLsGPmCc/618PdSyjJQFkI8iepC+DDKwb/knBMCtgHngGEp5bOLXOdh1BoXAYQQf4tad4PL115zi6Gdu2Y1MVCDBxabUflV4L8IIRKoyPO7qIh0qfOXy8LmSc37VQAppS2EqEspm8dt1PtCAEeklA8scd2q86/Ftb+PFrNJAP9VSvk/5z8g1FCO4jVeX6PRmrvmpvED4B1CCL/TGvltKPnjrBDiXTC7QXg7gFTjz55H9a/+ulT9yXNLnd9ESjkDZIQQjziHfgb4/rxT3uM892Fgxjl/ORwHUkKIB5znu4UQe67ynDxqtunVeEKoYc1tqO5/zwPfBH7e+baCEKJHCNF+lev8C2qNA0K1nf4J59hia6+5xdCRu+amIKV8UQjxRZS+PIFyYADvB/5ECPFbKF37r51zQEkzX0Y5PJZxfpMPAH8qhAgAZ4Cfm/dYRQjxkvPcn78G+2tCiHcC/7cj/bhQI9COXOFpTwIfFWqM23+VUn5xifMOOucmgY9LKS8CF4UQu4BnHBmoAPw06pvBUja+KIT4LKodLKh9ipcAllh7zS2Ebvmr2bAIIb6H2kg80GpbmgghPgYUpJS/32pbNBsbLctoNBrNBkRH7hrNTUAI8XPAv11w+Ckp5S+3wh7NrYd27hqNRrMB0bKMRqPRbEC0c9doNJoNiHbuGo1GswHRzl2j0Wg2INq5azQazQZEO3eNRqPZgGjnrtFoNBsQ7dw1Go1mA6Kdu0aj0WxAtHPXaDSaDYh27hqNRrMBuWX6ub/wwgvtLpfrU6jRafpDTaPR3Cxs4HCj0fjg3XffPdEqI24Z5+5yuT7V2dm5K5VKZQzD0N3SNBrNTcG2bZFOp3ePjY19Cnh7q+y4lSLYvalUKqcdu0ajuZkYhiFTqdQMSiVonR2tfPFVxtCOXaPRrAaOr2mpf72VnLtGo9HcMmjnvoq8613v6k8kErdv27ZtT6ttWWk+/vGPt2/btm3P4ODgnt/93d9tb7U9N5vF/i/f+ta3btm5c+funTt37u7p6blt5//f3r0HNXWgfwN/chNUIleTYDiESwhJQBCVrmK7Km0XFLRqoWzrVJC2q12pFzpI3Q61VqxWtHiptV5A29qiFi2KN2qpg0PVXS8jIOEqGkIUFAIIhFsI7x9u+uN1E6h6wgmH5zPTGccx5HlKzsPDSc73SKVyKmskU2VlJecvf/mLxNPT00csFvusX7+eBwAQHx8/jsfj+Rn6PnLkiC3VtZJFq9Uyxo8fL/P29paLxWKfVatWjQMAeOONN0Te3t5yiUQiDw0N9WhubrbIOTps7sRUUFBw19/fv57KGs6ePWvD5XL1ixcvdq+oqCimshYyXb161fqtt97yvHHjRom1tbV++vTpkr179yp9fX07qa7NXAb6Xr733nsutra2PVu2bLlPRX1kUyqVHJVKxXnxxRe1jY2NzICAAPmxY8cqf/jhBwcbG5uezz77rI7qGsmm1+uhpaWFaWtrq+/s7GQEBgZ6p6amqgICAtodHBz0AADvvvuuC4/H033++ee1Tz6+oKDAyd/f323QC/+vYfNpmb4SMguI8tqWUWR+TYmAq02J8Ff1929mzZrVWlZWNoLM5+1LUZJItLWWk9rXaBuJVi77ot++ioqKRgYEBLRyuVw9AMC0adNaDh8+bJecnGz2A16TWU5017aR2jNHMFrrECF55u+lXq+H7Oxsh/Pnz5eRWZdB7nclhEbdSmrPDkIb7cuLZCZ7FolE3SKRqBsAwN7eXu/p6dleXV1tttdyX0m/JxGVjZWk9iu2F2vXT1vf7/eYyWSCra2tHgCgq6uLodPpGAwGAwyDXa/XQ3t7O5PBYJBZGmks8tcJNLRMmDCh/T//+Q+3traW1dLSwjx//rytSqUalAPfEuXk5Ng4OTl1jx8/npa/uZSVlY1QKBSjpk+f3goAkJaWxpNIJPLIyEi3hw8fsqiuj0w6nQ6kUqmcz+f7T58+/VFwcHAbAEBERITb2LFj/SsrK60/+ugjyj7L3h88LTPIysrKRoSHh3vR6bQMAEBqaqrT/v37x44cOVLv7e3dbmVl1Zuent7vZjTUmfpeLly40FUsFneuW7eOdqcqmpubmUFBQd6rV6++Hx0d3aRSqdjOzs46BoMBK1euFNbW1nJ++umnu1TXSbb6+npWWFiY51dffVUdGBjYAfB48MfExLgGBga2rVixouHJx1B9WgY3d0SKVatW1RcXF5dcu3atzN7evkcikXRQXRMVuru74dy5c/aLFi3SUF0L2To7OxlhYWGekZGRmujo6CYAAIIgdGw2G1gsFsTFxT28efPmaKrrNAcnJ6eel156qSU7O/uPN4zZbDYsXLhQk5WVZU9lbabgcEekUKvVbACAioqKEadPn7Z79913aTfc/owTJ06M8fDw6PD09OymuhYy6fV6+Pvf/y6SSCQdn3766R+/kSiVSo7hz4cPH7bz9vZup6ZC8t27d49dX1/PAgBobW1lXLhwYYxUKu24deuWFcDj/yc///yznZeXl0UuMsPyDVWqzJkzx/3KlSvcxsZGNp/P9/voo4/urVq1ivJTRWSYO3euZ1NTE5vNZvdu27at2snJqYfqmszJ1PcyIyPDITIyknY/2M6fP2+TlZXl6OXl1W74iOe6devUGRkZDgqFYiQAgIuLS9eBAweU1FZKHpVKxYmJiXHv6emB3t5exmuvvaaJiopqDgwMlLa2tjJ7e3sZMplMe/DgQYvsGc+5I4SQGeA5d4QQQqTD4Y4QQjSEwx0hhGgIhztCCNEQDneEEKIhHO4IIURDONwHkanY1KHOWPxtXV0dKygoyEskEvkGBQV50S1zxFjPly5dGunv7y+VSqVyX19f2YULF0gNu6JSf6/dDRs28Nzd3X3EYrHP0qVLXaisk0ymIn8NYmJiiFGjRgVQVd9AcLgPIg6HA1u3bq25fft28dWrV0vS0tJ4169ft6a6rucVGxtbf/LkyYq+f7d27VrnGTNmtCiVylszZsxo+eSTTwRU1WcOxnpOSEhw+fjjj++VlpYqkpKS7iUmJhJU1Uc2U6/d7Oxs7unTp+0UCoWisrKyOCkp6X+ib4cqa2vr3vz8/LKysjJFcXGxIjc3d0xubu5oAICLFy+OampqsuiLQC26OLPJWkbAAwW5WxVProV5u/oNyjIVmzpp0iRSLl9eWVJNlLZ1kNqXdLS1dpvM9anjb8+dO2eXl5dXBgCwZMmShunTp3sDgJrM2gAAsrKyiAcPHpDaM4/H086bN++pe2YwGNDc3MwCAGhqamLx+fwuMusyyNm9jahXKUnt2YkQaUPeX/nUkb/79u1zWr169f2RI0f2AgAIhUIdmXUBANz718dEZ0UFqf1aeXlpx32+4Zkif3U6HSQkJLgcPXr0jkwmsyOzLjLh5k6RJ2NT6aahoYFtGAYEQXQ3NDTQfpHYsWOH6pNPPnERCAR+SUlJLlu3biX9h5kl6Pvaraqqss7Ly+P6+flJAwMDvfPy8mhzKgrAeOTvxo0bebNnz24yvL4tFe0POKMG2LDNrbm5mblgwQLPTZs2qQzB/2QYaMOmCpPJBHPd0GCgDXsw7dixY+zGjRtVMTExTfv377ePiYlxu3TpUjnZz9Pfhm1uT752e3p6GBqNhnXz5s3SvLy8UW+99ZanSqUqYjLJ2xsH2rDNic1mQ2lpqcIQ+Xv27FmbrKws+ytXrpjlRixkws19kBmLTaUjR0dHnSExUKlUchwcHEj/dd3SHDt2zHHRokVNAACxsbGNhYWFtIq/NfbaFQgEXREREU1MJhNmzpypZTKZvbW1tbRbGg2Rv7/++itXqVRau7m5jRcKheM7OjqYrq6uvlTXZwwO90FkKjaVjkJCQpr27NnjCACwZ88ex9DQUNr+IDMYO3Zs95kzZ7gAANnZ2VyRSGSRUbDPwtRrd86cOU25ublcAIDCwkKr7u5upkAgoMUPcmORv5MnT9bW19cXqNXqIrVaXWRtba2vrq6+RXWtxtDuJ6wlMxWbGhUV1Ux1bc/DWPztunXr7s+fP99TJBI5CYXCrp9//vk21XWSyVjPu3fvVsbHxxMffvghw8rKSv/NN99YZBTsszD12l2+fHl9VFSUm5eXlw+Hw9Hv3bv3DpmnZKhkLPL3zTffHDLHKkb+IoSQGWDkL0IIIdLhcEcIIRrC4Y4QQjSEwx0hhGgIhztCCNEQDneEEKIhHO6DaKAI0aHKWPxtenq6vVgs9mEymZMuXrxIq7wRAOM9X758eeSECROkEolEHhwcLNZoNLQ5vkxF/oaFhXlIpVK5VCqVC4XC8YbPwNOBqeP19ddfdzP0KpVK5ZcuXRpJda3G0ObFNxT0FyE6lBmLv50wYUL7sWPHKidPnkzLYDRjPb/33ntuGzZsqCkvL1fMnTu3cd26dbSJOTYV+Xv69Omq0tJSRWlpqWL27NmN4eHhjVTXSpb+jtfk5OQaQ99BQUHtVNdqzLC8QjXp9ySisrGS1G1SbC/Wrp+2/pkiRMmSkFlAlNe2kNqXRMDVpkT4P3X87cSJEwfl0ntFSSLR1lpOas+jbSRaueyLp+5ZqVRazZo1qxUAIDw8/FFISIhk+/bt98isDQBAk1lOdNe2kdozRzBa6xAheerIX0NctV6vh+zsbIfz58+THqiV+10JoVG3ktqvg9BG+/IiGaXHq7nh5j7IjEWIUl0TIodYLO744Ycf7AAADh065FBbWztioMcMRcbiqnNycmycnJy6x48f30llbWQzdbyuW7dOKJFI5O+88w7R3t5ukRN/WG7uA23Y5vRkhOjVq1etAwMDSdlyB9qw6WigDXswpaen342LiyM2bdrkHBoa2sThcMyS7dHfhm1upuKqDx065PD6669rzPGcA23Y5mTseP3yyy/VBEF0d3Z2MhYuXChKSkoSbNmy5T5VNZqCmztFDBGi2dnZtlTXgsgREBDQ8fvvv1cUFxeXREdHawiCoNUWayquuru7G86dO2e/aNEiswx3S9D3eBWJRN1MJhNGjhzZGxsb23D9+nWLfN8Mh/sgMhYhKpPJaBMLO9yp1Wo2AEBPTw+sXbvW+Z133nlAdU1k6S+u+sSJE2M8PDw6PD09LfrORE/L1PFquE+BXq+H48eP28lkMnxDdbgb6hGiphiLv3V0dNQlJCS4NjY2sufPn+8lk8m0+fn5FQN/taHBWM+tra3MtLQ0HgDA7NmzG5cvX95AdZ1k6S+uOiMjwyEyMpJ2W7up43XKlCkSjUbD7u3tZcjlcu13331nkdHOGPmLEEJmgJG/CCGESIfDHSGEaAiHO0II0RAOd4QQoiEc7gghREM43BFCiIZwuA8ynU4HMplMPnPmTDHVtZDFWPztkiVLXNzd3X0kEon81Vdf9TRcDEIXpiJw6+rqWEFBQV4ikcg3KCjI6+HDh7To21S/ly5dGunv7y+VSqVyX19f2YULF2gT72wq8lev18MHH3wgdHNz8/Xw8PBJTk7mUV2rMTjcB1lycjJfLBZb5BVtz8pY/G1ISMij8vLy4vLycoVYLO5ISkqiTfwtgOkI3LVr1zrPmDGjRalU3poxY0bLJ598Qou+TfWbkJDg8vHHH98rLS1VJCUl3UtMTCSorpUspiJ/d+7c6VhTU8O5ffv2raqqquLFixdb5AVcw/IK1Xv/+pjorKggdcOw8vLSjvt8Q78BR7dv3+bk5OTYrlmz5n5qaiqfzOcHAICsZQQ8UJC7OfHkWpi366njbxcsWPDI8OepU6e2ZWZm2pNa13+tLKkmSts6SO1ZOtpau03m2m/PpiJwz507Z5eXl1cGALBkyZKG6dOnewOAmsz6srKyiAcPHpDaM4/H086bN++pI38ZDAY0NzezAACamppYfD6/i8y6AABydm8j6lVKUvt1IkTakPdXPlPk7/79+3kZGRlVLNbjX8qEQqGOzNrIMiyHO1WWLVtGbN68ucZwMAwXBw8edIqIiLDI7YYMfSNwGxoa2IYhSBBEd0NDA+2Osb79ikSirrCwMK+kpCRCr9dDfn5+KdX1kUmn04Gvr6+8urraKjo6+kFwcHCbSqWy+v777+1Pnz5t7+DgoNu1a1e1JUYd0+6F92cMtGGbQ0ZGhq2Tk5PupZde0p46dYprlicZYMOmQmJiooDFYvUuXbrULMN9oA3b3ExF4AI83vzMcXOH/jZsc3uy3/j4+LEbN25UxcTENO3fv98+JibG7dKlS+VkPudAG7Y5GYv87erqYlhbW/feunWr5Ntvv7WLiYlxu379Ouk3KXleeM59kOTn59ucP3/eTigUjo+JifG4cuUK97XXXnOnui5z2rFjh2NOTo7d8ePH7zCZ9HupGYvAdXR01BlSA5VKJcfBwcEif2V/Fsb6PXbsmOOiRYuaAABiY2MbCwsLLTL+9nn1jfzl8/ldb775ZiMAwNtvv91UXl6O91Adznbt2qWuq6srVKvVRQcPHqyaMmVKy4kTJ+5QXZe5ZGZmjtm+fbvgzJkzlVwuVz/wI4YWUxG4ISEhTXv27HEEANizZ49jaGhok+mvMnSY6nfs2LHdZ86c4QIAZGdnc0UiEW0irE1F/s6aNavp3LlzXACAM2fOcEUikcWdkgEYpqdlELmMxd+mpqYKurq6mMHBwRIAgIkTJ7b++OOP1VTXShZTEbjr1q27P3/+fE+RSOQkFAq7fv7559tU10oGU/3u3r1bGR8fT3z44YcMKysr/TfffGOR8bfPwlTk76uvvtoaERHh/vXXX/NHjRql37dv312qazUGI38RQsgMMPIXIYQQ6XC4I4QQDeFwRwghGsLhjhBCNITDHSGEaAiHO0II0RAO90EmFArHSyQSuSEilep6yGAs8nfFihXjDH1OmzbN6+7duxwqaySbqQjc9PR0e7FY7MNkMiddvHiRNvG3pvq9fPnyyAkTJkglEok8ODhYrNFoaDNTTEX+Tpo0yVsqlcqlUqmcx+P5vfLKK55U12oMfs59kAmFwvHXrl0rcXZ2ps1l6WfPnrXhcrn6xYsXu1dUVBQDAGg0GqYhayU5OZmnUCis6XQRk1Kp5KhUKs6LL76obWxsZAYEBMiPHTtWyWAwgMVi9b733ntuW7ZsUf31r3/VUl0rGUz1Gx0d7f7FF1+owsLCWrdt2+Z4584dq+3bt9+jul4y6PV6aGlpYdra2uo7OzsZgYGB3qmpqaqXX365zfBvQkJCPOfMmdMUFxfX8OTjqf6c+7C8QjX3uxJCo24ldatyENpoX14kozTEKun3JKKysZLUvsT2Yu36aeufOvK3b4hWW1sb0xwBWgAACZkFRHltC6k9SwRcbUqE/zNF/s6fP/9Rf48jg6IkkWhrLSe159E2Eq1c9sVTR/4qlUqrWbNmtQIAhIeHPwoJCZGQPdw1meVEd20bqf1yBKO1DhGSZ4r8/aMujYZ5+fJlbkZGhkXGiNDmV6ih5OWXX/by8fGRbdmyxYnqWszpgw8+EAoEAr/MzEzHlJQUWmxzxvSNwKW6lsHQt1+xWNzxww8/2AEAHDp0yKG2tnbEQI8fSnQ6HUilUjmfz/efPn36o+Dg4D+29h9//NE+KCjo0ZNpoJZiWG7uVG7Y+fn5pe7u7t1qtZodHBws8fHx6TBsPs9roA17sO3cuVO9c+dO9Zo1awQpKSm81NRU0gf8QBu2ufUX+Wsu/W3Y5vZkv+np6Xfj4uKITZs2OYeGhjZxOBzSz/MOtGGbk7HI38DAwA4AgKNHjzrExsY+pKq2geDmPsjc3d27AR7fvSUsLKzp8uXLtIxI7Ss2NlZz6tQps9yJiUrGInDpzFi/AQEBHb///ntFcXFxSXR0tIYgCItMSHxefSN/AQDu37/PLiwsHP3GG280U12bKTjcB9GjR4+YjY2NTMOfL1y4MMbPz49W91M1KCoqsjL8+ejRo3aenp606tNUBC5dmepXrVazAQB6enpg7dq1zu+8884D6qokl6nIXwCA77//3j44OLhp1KhRFvuJlGF5WoYqNTU17Pnz54sBAHp6ehivv/56Q0REhNnfgDM3Y5G/586ds62qqrJmMBi9Li4uXWlpabSJggUwHYHb2dnJSEhIcG1sbGTPnz/fSyaTafPz8ysG+nqWzlS/5eXlVmlpaTwAgNmzZzcuX778fz41MlSZivwFAMjMzHRYvXr1fapr7A9+FBIhhMyA6o9C4mkZhBCiIRzuCCFEQzjcEUKIhnC4I4QQDeFwRwghGsLhjhBCNITDfZDV19ezQkNDPdzd3X08PDx8fv311yF/haqxyF+DtWvX8hkMxqT79+/T6poKUxG4S5YscXF3d/eRSCTyV1991dNwEcxQZyr+trS0dISfn5/U1dXVNywszKOjo8M8CXEUMNXziRMnuHK5XCaVSuWTJk3yvnXrltVAX4sKONwH2T/+8Q/ib3/726M7d+4UKxQKxYQJEzqorul5xcbG1p88efJ/LtSprKzk5ObmjnF2du6ioi5z4nA4sHXr1prbt28XX716tSQtLY13/fp165CQkEfl5eXF5eXlCrFY3JGUlCSgulYyWFtb9+bn55eVlZUpiouLFbm5uWNyc3NHx8fHu8TFxdVVV1ffsrW11W3fvp02YXimel6xYoXo0KFDd0pLSxWRkZGatWvXOlNdqzG02qb+rJzd24h6lZLUCFEnQqQNeX9lvwFHDQ0NrH//+9/czMzMuwCPXzzW1tY9ZNVw718fE50VFaT2ZeXlRkVO7QAADPFJREFUpR33+YanjvwFAIiLiyNSUlJqIiIixGTW9P/JWkbAAwW5N8XgybUwb9czRf4uWLDgjyuOp06d2paZmUl6ps7KkmqitK2D1J6lo62122SuJns2FX97+fJl7okTJ6oAAGJjYxs+/fTTcYmJiaSGaWVlZREPHjwgtV8ej6edN2/eM0f+NjU1sQAAmpubWc7Ozt1k1kaWYTncqVJWVjbCwcFBFxkZ6aZQKEb5+fm17du3TzVmzBiLjAx9HocOHbJzdnbunjp1Kq0yZYwxFfl78OBBp4iICA1VdZFNp9OBr6+vvLq62io6OvqBTCbr5HK5PRzO45tsubm5ddXV1dEu8rdvz8HBwW3ffPPN3QULFnhZWVnpbWxseq5evVpCdZ3GDMvhPtCGbS46nY5RUlIyavv27dXBwcFtixcvJpKSkgRk3dxgoA17sLS0tDA3b94suHDhgvkzVQbYsM3NVORvYmKigMVi9S5dupT04d7fhm1OT8bfFhYWWg/G8w60YZuTscjfL7/8kn/8+PGK4ODgtqSkJP77779PHDlyxOKyk/Cc+yByc3Pr4vP5XYbA/6ioqMaCggLa3GfToKSkxKqmpsbKz89PLhQKx9fV1Y2YOHGirLq6mlbLhKnI3x07djjm5OTYHT9+/A6TSb9DzBB/m5+fP7qlpYXV3f34rMTdu3dH8Pl82r2/AvB/PZ88edK2pKRkpOEYXrRoUeO1a9dsqK7PGPq98iyYq6urTiAQdBUUFFgBAPzyyy9jvL29h/wbqk964YUX2jUaTYFarS5Sq9VFfD6/68aNGyWurq60uW+sqQjczMzMMdu3bxecOXOmksvl0uZ0m7H4W7lc3jFlypSWAwcO2AMApKenO4aHh9Mm195Uz62trazCwkIrAIBTp06NEYvFFnkM02qTGgp27txZvXDhQo+uri6Gq6trZ0ZGxl2qa3pexiJ/V61aResETlMRuAkJCURXVxczODhYAgAwceLEVjrcGNxU/K2/v397VFSUZ3JystDHx0e7YsUK2nzfTfXc3d2tjIiI8GQwGGBra9tz8OBBi7yHKkb+IoSQGWDkL0IIIdLhcEcIIRrC4Y4QQjSEwx0hhGgIhztCCNEQDneEEKIhHO6DqKCgwEoqlcoN/9nY2AR89tlnPKrrel7GIn/j4+PH8Xg8P0OvR44csaWyRrKZivxdsWLFOIlEIpdKpfJp06Z53b17l0N1rWQwFX/7+eefj3V1dfWlY6yzqZ5PnjzJlcvlMi8vL58FCxa4Ga7QtTT4OXeK6HQ6EAgE/pcuXSqRSCRD+pLts2fP2nC5XP3ixYvdKyoqigEeD3cbG5uezz77rG6gxw9FSqWSo1KpOC+++KK2sbGRGRAQID927Filu7t7lyFjJjk5madQKKzpcBGTXq+HlpYWpq2trb6zs5MRGBjonZqaqrK2ttY7OTn1BAcHe1+7dq3E2dmZVlchP9nz1q1bVW+//bbnL7/8Uubn59e5cuXKcSKRqMvYRXtUf86dVj9p/yxNZjnRXdtGaqYLRzBa6xAh+dMBRydPnhzj6uraSeZgz/2uhNCoW0nty0Foo315keyZIn8HQ9LvSURlYyWpPYvtxdr109Y/U+TvpEmT/rgUva2tjWmIiCVTQmYBUV7bQmrPEgFXmxLh/9SRv9OmTTN76qeiJJFoay0ntd/RNhKtXPbFU0f+slgs4HA4ej8/v04AgNDQ0EcbN24UWOIV2XhahiIZGRkOERERDVTXYU5paWk8iUQij4yMdHv48CEt7khkzJORvx988IFQIBD4ZWZmOqakpJCS+GkJdDodSKVSOZ/P958+ffojQ3gWnT3Z84wZM9p6enoYFy9eHAUAcOTIEfv79+9bZMwxnpahQEdHB8PZ2dmvsLCwmCAIWvwaW1ZWNiI8PNzLcFpGpVKxnZ2ddQwGA1auXCmsra3l/PTTT3cpLpN0zc3NzKCgIO/Vq1ff75sMCQCwZs0aQUdHBzM1NZU2Ax7g8a0iw8LCPL/66qvqwMDADgAAoVA4nm6nZfrq23NzczMrMTHRpaurizlz5szmX375xa60tFTx5GOoPi2DmzsFMjMzbeVyuZYug90YgiB0bDYbWCwWxMXFPbx58+aQv1fsk0xF/hrExsZqTp06RfqdmKhmiL/Nzs6m1Zvk/enb8yuvvNJ2/fr1sqKiopIZM2a0enh4WGQqJA53Chw+fNjhjTfeoM0deoxRKpV/fErk8OHDdt7e3rS6I5OpyN+ioqI/bpZ89OhRO09PT1r0bSz+ViaTWeRQI4upntVqNRsAoL29nZGSkiJYunQpqbcVJMuwfEOVSo8ePWLm5+eP+fbbby3uzi3Pyljkb15eHlehUIwEAHBxcek6cOAAbfoFMB35m56e7lRVVWXNYDB6XVxcutLS0mjRt6n42+TkZN7OnTsFDQ0NHH9/f/nMmTObLfGuRM/CVM9LlixxOX/+vK1er2fExsY+mDt3bgvVtRqD59wRQsgM8Jw7Qggh0uFwRwghGsLhjhBCNITDHSGEaAiHO0II0RAOd4QQoiEc7oNo3bp1PLFY7OPl5eUzZ84cd61WS36qFAWMRf4CAGzYsIHn7u7uIxaLfZYuXepCVX3mYCry12Dt2rV8OsXgmoq/nTt3rrubm5uvl5eXT2RkpFtnZyctXtN96XQ6kMlk8pkzZ4oBAEpLS0f4+flJXV1dfcPCwjw6Ojossmcc7oPkzp07nL179/Jv3rypqKioKO7p6WHs37/fgeq6yBAbG1t/8uTJir5/l52dzT19+rSdQqFQVFZWFiclJdVSVZ85cDgc2Lp1a83t27eLr169WpKWlsa7fv26NcDjwZ+bmzvG2dl5SEc592Vtbd2bn59fVlZWpiguLlbk5uaOyc3NHb1w4UJNVVXVrbKysuKOjg7Gtm3bnKiulWzJycl8sVj8x5XG8fHxLnFxcXXV1dW3bG1tddu3b7fInmmxVTytrKws4sGDB6RGiPJ4PO28efP6jRDt6elhtLW1Ma2srHra29uZLi4upKb85+zeRtSrlKT25USItCHvr3zqyN/du3ePXb169f2RI0f2AgAIhUKz5Ojc+9fHRGdFBak9W3l5acd9vuGZI3/j4uKIlJSUmoiICDGZdf0haxkBDxSk9gw8uRbm7XrqyN+oqKhmw7+ZPHlyW01NDekJiStLqonStg5S+5WOttZuk7kOGNF9+/ZtTk5Oju2aNWvup6am8vV6PVy+fJl74sSJKgCA2NjYhk8//XRcYmKixUUQ4OY+SNzd3buXLVtW6+7u7sfj8fy5XG7PggULHlFdl7lUVVVZ5+Xlcf38/KSBgYHeeXl55A4jC9I38vfQoUN2zs7O3VOnTqVFpkxf/UX+dnZ2Mo4cOeIYFhbW3N/XGGqWLVtGbN68uYbJfDwq6+rq2Fwut4fDeRyd5Obm1lVXV2eRkb/DcnMfaMM2h4cPH7JOnz5tV1lZWeTo6NgTFhbm8fXXXzv885//JC1AbKANezD19PQwNBoN6+bNm6V5eXmj3nrrLU+VSlVkOEjIMtCGbW7Nzc3MBQsWeG7atEnF4XBg8+bNggsXLlQM/Mjn0M+GbU5sNhtKS0sVhvjbq1evWhsif6Ojo12nTJnSGhoa2kr28/6ZDdscMjIybJ2cnHQvvfSS9tSpU1wqangeuLkPkuzs7DGurq6d48aN01lZWfXOmzev6dKlSzZU12UuAoGgKyIioonJZMLMmTO1TCazt7a2llbLxJORvyUlJVY1NTVWfn5+cqFQOL6urm7ExIkTZdXV1bTq+8nI3w8//NC5vr6evW/fPotZLsiQn59vc/78eTuhUDg+JibG48qVK9wlS5YQLS0tLMN9U+/evTuCz+db5HsrONwHiZubW9eNGzdsWlpamHq9Hn777TcunSNT58yZ05Sbm8sFACgsLLTq7u5mCgQC2uTXG4v8feGFF9o1Gk2BWq0uUqvVRXw+v+vGjRslrq6uQ75vU/G3X375pdNvv/1mm5WVVcVi0etmW7t27VLX1dUVqtXqooMHD1ZNmTKl5eTJk3emTJnScuDAAXsAgPT0dMfw8PD/yfK3BLTaKCxZcHBw25w5cxr9/PxkbDYbfHx8tPHx8Rb3JsyzMBb5u3z58vqoqCg3Ly8vHw6Ho9+7d+8dsk/JUMlU5G/fNxjpxFT8LZvNnuTs7Nw5efJkGQBAeHh445YtW+5TXa85bd26tSYqKsozOTlZ6OPjo12xYoVFps1i5C9CCJkBRv4ihBAiHQ53hBCioeE03PV6vd4iLxNGCNHLf2eNnsoahtNwv/Xw4UNbHPAIIXPS6/WMhw8f2gLALSrrGDafltHpdO/W1tbur62t9YXh9UMNITS49ABwS6fTvUtlEcPm0zIIITSc4AaLEEI0hMMdIYRoCIc7QgjREA53hBCiIRzuCCFEQ/8PhnHaFLTGcPsAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"(triangle\n",
" .pivot(index=\"development_period\", columns=\"occurrence_period\", values=\"payments\")\n",
" .plot(logy=True)\n",
")\n",
"plt.legend(loc=\"lower center\", bbox_to_anchor=(0.5, -0.8), ncol=5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XiQJklV349W2"
},
"source": [
"## Guaranteeing all cells\n",
"\n",
"With the above dataset, records will be missing if they do not have any claims transactions. This can be problematic if the models or calculations later on in the process flow rely on the dataset having every single accident/development period combination. To include these zero cells is not too difficult to implement in SQL."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kO6ZLGcj49W3"
},
"source": [
"The original dataset will be joined to a dummy dataset with the full range of accident/occurence and development periods."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "qYMNW8T249W3",
"outputId": "3cd641d3-aa60-4255-fc81-2e5a4cef6443"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" "
],
"text/plain": [
" occurrence_period development_period payment_period payments\n",
"0 1 2 2 46985.029619\n",
"1 1 3 3 392545.850638\n",
"2 1 4 4 185946.113394\n",
"3 1 5 5 700630.302735\n",
"4 1 6 6 261024.509136\n",
".. ... ... ... ...\n",
"815 33 1 33 0.000000\n",
"816 34 1 34 0.000000\n",
"817 35 1 35 0.000000\n",
"818 38 1 38 0.000000\n",
"819 39 1 39 0.000000\n",
"\n",
"[820 rows x 4 columns]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"con.execute(\"\"\"\n",
" CREATE OR REPLACE VIEW triangle_fill AS \n",
" \n",
" WITH full_tri as (\n",
" SELECT \n",
" o.occurrence_period,\n",
" d.development_period,\n",
" d.development_period + o.occurrence_period - 1 as payment_period\n",
"\n",
" FROM \n",
" range_occurrence_view as o,\n",
" range_development_view as d\n",
" )\n",
" SELECT \n",
" full_tri.*, \n",
" COALESCE(triangle.payments, 0) as payments\n",
" FROM \n",
" full_tri\n",
"\n",
" LEFT JOIN\n",
" triangle\n",
" ON\n",
" full_tri.occurrence_period = triangle.occurrence_period\n",
" AND full_tri.development_period = triangle.development_period\n",
" AND full_tri.payment_period = triangle.payment_period\n",
" \n",
" WHERE\n",
" full_tri.payment_period <= 40 \n",
" -- if triangle is cut off at particular calendar period \n",
";\n",
" \n",
" SELECT * FROM triangle_fill;\n",
"\"\"\"\n",
")\n",
"triangle_fill = con.fetchdf()\n",
"triangle_fill"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7CJgupxN49W5"
},
"source": [
"Again, here is the triangle. You can see the accident/development cells with no payments are now zero instead of null."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "OleYbVbI49W5",
"outputId": "aee6b03a-90d8-40da-e68f-89291c673d2e"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
development_period
\n",
"
1
\n",
"
2
\n",
"
3
\n",
"
4
\n",
"
5
\n",
"
6
\n",
"
7
\n",
"
8
\n",
"
9
\n",
"
10
\n",
"
...
\n",
"
31
\n",
"
32
\n",
"
33
\n",
"
34
\n",
"
35
\n",
"
36
\n",
"
37
\n",
"
38
\n",
"
39
\n",
"
40
\n",
"
\n",
"
\n",
"
occurrence_period
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
1
\n",
"
0.000000
\n",
"
46985.029619
\n",
"
392545.850638
\n",
"
1.859461e+05
\n",
"
7.006303e+05
\n",
"
2.610245e+05
\n",
"
3.329688e+05
\n",
"
2.646413e+05
\n",
"
6.057430e+05
\n",
"
1.434176e+05
\n",
"
...
\n",
"
507751.595236
\n",
"
1.267975e+06
\n",
"
205780.737653
\n",
"
6226.894042
\n",
"
0.000000
\n",
"
5.087788e+05
\n",
"
55918.782513
\n",
"
0.00000
\n",
"
412516.399423
\n",
"
0.0
\n",
"
\n",
"
\n",
"
2
\n",
"
64334.385165
\n",
"
103991.537490
\n",
"
134383.992047
\n",
"
2.940818e+05
\n",
"
4.868833e+05
\n",
"
2.805029e+06
\n",
"
3.835312e+05
\n",
"
1.475784e+05
\n",
"
2.536358e+05
\n",
"
5.385814e+05
\n",
"
...
\n",
"
8745.529181
\n",
"
3.974022e+05
\n",
"
714117.521603
\n",
"
89465.857732
\n",
"
128332.630805
\n",
"
5.301655e+05
\n",
"
349790.454839
\n",
"
12587.59026
\n",
"
90955.620959
\n",
"
NaN
\n",
"
\n",
"
\n",
"
3
\n",
"
3142.606330
\n",
"
43202.971210
\n",
"
156562.667084
\n",
"
2.792880e+05
\n",
"
5.374176e+05
\n",
"
4.028233e+05
\n",
"
6.908980e+05
\n",
"
4.429766e+05
\n",
"
7.212855e+05
\n",
"
8.362954e+05
\n",
"
...
\n",
"
20938.965519
\n",
"
0.000000e+00
\n",
"
0.000000
\n",
"
19996.986384
\n",
"
0.000000
\n",
"
0.000000e+00
\n",
"
0.000000
\n",
"
0.00000
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
4
\n",
"
0.000000
\n",
"
61865.265714
\n",
"
57298.919248
\n",
"
1.859610e+05
\n",
"
1.862006e+05
\n",
"
1.453144e+05
\n",
"
2.696107e+05
\n",
"
4.480261e+05
\n",
"
1.742546e+05
\n",
"
9.715882e+05
\n",
"
...
\n",
"
0.000000
\n",
"
6.155031e+05
\n",
"
197934.940768
\n",
"
0.000000
\n",
"
0.000000
\n",
"
3.830643e+05
\n",
"
0.000000
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
5
\n",
"
5346.166482
\n",
"
54954.008437
\n",
"
264498.220981
\n",
"
2.036823e+05
\n",
"
4.472988e+05
\n",
"
2.633055e+05
\n",
"
3.387926e+05
\n",
"
3.150558e+05
\n",
"
7.504150e+05
\n",
"
2.611304e+05
\n",
"
...
\n",
"
587681.103745
\n",
"
2.201814e+04
\n",
"
87364.263674
\n",
"
0.000000
\n",
"
322793.116875
\n",
"
1.043557e+06
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
6
\n",
"
4222.377626
\n",
"
117425.751392
\n",
"
537503.282266
\n",
"
4.137136e+05
\n",
"
3.769690e+05
\n",
"
6.769168e+05
\n",
"
1.084063e+06
\n",
"
8.276801e+05
\n",
"
8.531432e+05
\n",
"
2.054070e+05
\n",
"
...
\n",
"
0.000000
\n",
"
1.900894e+06
\n",
"
0.000000
\n",
"
189803.137289
\n",
"
165066.293055
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
7
\n",
"
0.000000
\n",
"
51733.238185
\n",
"
121187.914637
\n",
"
2.782337e+05
\n",
"
3.766345e+05
\n",
"
5.262455e+05
\n",
"
4.970687e+05
\n",
"
6.972138e+05
\n",
"
7.314588e+05
\n",
"
6.290212e+05
\n",
"
...
\n",
"
40683.584878
\n",
"
4.737402e+05
\n",
"
0.000000
\n",
"
874535.741565
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
8
\n",
"
0.000000
\n",
"
29161.090791
\n",
"
182951.743887
\n",
"
3.381624e+05
\n",
"
2.823336e+05
\n",
"
3.432786e+05
\n",
"
1.183421e+06
\n",
"
9.014267e+05
\n",
"
1.167906e+06
\n",
"
4.107145e+05
\n",
"
...
\n",
"
493829.570893
\n",
"
3.123278e+05
\n",
"
58747.903282
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
9
\n",
"
0.000000
\n",
"
133157.263191
\n",
"
215744.746038
\n",
"
1.374049e+06
\n",
"
7.828536e+05
\n",
"
7.966235e+05
\n",
"
4.644824e+05
\n",
"
9.741834e+05
\n",
"
5.535232e+05
\n",
"
5.008409e+05
\n",
"
...
\n",
"
117212.190268
\n",
"
3.179059e+05
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
10
\n",
"
0.000000
\n",
"
79641.863426
\n",
"
575926.050990
\n",
"
1.356863e+06
\n",
"
6.072203e+05
\n",
"
4.012266e+05
\n",
"
1.216483e+06
\n",
"
1.395769e+06
\n",
"
4.876399e+05
\n",
"
2.889569e+05
\n",
"
...
\n",
"
0.000000
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
11
\n",
"
0.000000
\n",
"
100416.983371
\n",
"
292038.198343
\n",
"
4.448307e+05
\n",
"
5.126842e+05
\n",
"
3.632974e+05
\n",
"
1.872042e+06
\n",
"
8.211516e+05
\n",
"
5.397643e+05
\n",
"
4.108131e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
12
\n",
"
0.000000
\n",
"
71522.558157
\n",
"
458885.392198
\n",
"
1.747373e+05
\n",
"
2.250982e+05
\n",
"
4.301923e+05
\n",
"
3.891993e+05
\n",
"
1.278298e+06
\n",
"
2.775127e+05
\n",
"
2.709438e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
13
\n",
"
0.000000
\n",
"
79064.667239
\n",
"
254608.617474
\n",
"
4.293419e+05
\n",
"
1.876411e+06
\n",
"
5.398142e+05
\n",
"
6.579055e+05
\n",
"
8.572567e+05
\n",
"
3.248639e+05
\n",
"
2.372064e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
14
\n",
"
0.000000
\n",
"
96277.421753
\n",
"
497171.088993
\n",
"
1.677511e+05
\n",
"
5.025259e+05
\n",
"
3.275906e+05
\n",
"
5.593842e+05
\n",
"
4.950296e+05
\n",
"
6.022564e+05
\n",
"
7.874864e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
15
\n",
"
0.000000
\n",
"
21066.291384
\n",
"
131006.302772
\n",
"
2.469400e+05
\n",
"
1.794551e+05
\n",
"
2.232539e+05
\n",
"
4.005883e+05
\n",
"
1.158106e+06
\n",
"
1.432307e+06
\n",
"
4.311331e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
16
\n",
"
0.000000
\n",
"
40871.450031
\n",
"
181169.969846
\n",
"
5.136258e+05
\n",
"
9.165714e+05
\n",
"
2.441091e+05
\n",
"
6.139660e+05
\n",
"
8.670557e+05
\n",
"
1.456116e+06
\n",
"
9.063431e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
17
\n",
"
21559.053170
\n",
"
98325.244742
\n",
"
111475.307366
\n",
"
6.413985e+05
\n",
"
6.213374e+05
\n",
"
7.985672e+05
\n",
"
1.252059e+06
\n",
"
9.138599e+05
\n",
"
1.066295e+06
\n",
"
3.610327e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
18
\n",
"
0.000000
\n",
"
51441.830587
\n",
"
135464.967542
\n",
"
2.466380e+05
\n",
"
3.549195e+05
\n",
"
7.319261e+05
\n",
"
4.614343e+05
\n",
"
3.535514e+05
\n",
"
5.865144e+05
\n",
"
1.090865e+06
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
19
\n",
"
0.000000
\n",
"
70653.792105
\n",
"
453457.316593
\n",
"
4.380374e+05
\n",
"
1.137775e+06
\n",
"
1.579018e+06
\n",
"
9.959784e+05
\n",
"
8.986285e+05
\n",
"
1.351723e+06
\n",
"
1.012969e+06
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
20
\n",
"
0.000000
\n",
"
143003.416713
\n",
"
780501.376194
\n",
"
3.219736e+05
\n",
"
1.125306e+06
\n",
"
3.863964e+05
\n",
"
3.987071e+05
\n",
"
7.493505e+05
\n",
"
5.173210e+05
\n",
"
2.957905e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
21
\n",
"
440.166014
\n",
"
96436.510110
\n",
"
932830.920427
\n",
"
6.675994e+05
\n",
"
8.898485e+05
\n",
"
5.927916e+05
\n",
"
1.256132e+06
\n",
"
1.541598e+06
\n",
"
2.055776e+06
\n",
"
4.470712e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
22
\n",
"
5071.193962
\n",
"
114720.424477
\n",
"
407660.107716
\n",
"
4.120153e+05
\n",
"
3.215467e+05
\n",
"
4.644149e+05
\n",
"
1.129388e+06
\n",
"
7.422531e+05
\n",
"
2.230668e+06
\n",
"
1.509081e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
23
\n",
"
0.000000
\n",
"
67368.580343
\n",
"
296994.656315
\n",
"
1.742078e+05
\n",
"
6.093717e+05
\n",
"
6.336027e+05
\n",
"
4.269155e+05
\n",
"
1.150700e+06
\n",
"
3.514760e+05
\n",
"
3.263753e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
24
\n",
"
2538.223611
\n",
"
60928.691028
\n",
"
474989.573924
\n",
"
2.655743e+05
\n",
"
3.890088e+05
\n",
"
7.493399e+05
\n",
"
1.231399e+06
\n",
"
6.559668e+05
\n",
"
6.981326e+05
\n",
"
3.937930e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
25
\n",
"
1179.531504
\n",
"
17397.734757
\n",
"
125719.238936
\n",
"
4.522247e+05
\n",
"
5.405587e+05
\n",
"
6.677909e+05
\n",
"
1.147964e+06
\n",
"
1.547991e+06
\n",
"
7.713320e+05
\n",
"
5.950225e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
26
\n",
"
18834.212213
\n",
"
54467.867400
\n",
"
301098.228443
\n",
"
1.205226e+06
\n",
"
6.651762e+05
\n",
"
1.773508e+06
\n",
"
2.409755e+05
\n",
"
3.835268e+05
\n",
"
1.634412e+06
\n",
"
4.614016e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
27
\n",
"
0.000000
\n",
"
16208.391804
\n",
"
129023.820713
\n",
"
3.686506e+05
\n",
"
5.212379e+05
\n",
"
2.942529e+05
\n",
"
4.663017e+05
\n",
"
5.628172e+05
\n",
"
6.043287e+05
\n",
"
6.298926e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
28
\n",
"
15268.662911
\n",
"
394082.054498
\n",
"
221508.422890
\n",
"
2.374703e+05
\n",
"
2.292117e+05
\n",
"
4.800493e+05
\n",
"
8.586132e+05
\n",
"
4.008364e+05
\n",
"
1.122428e+06
\n",
"
3.405180e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
29
\n",
"
3088.130242
\n",
"
11868.998623
\n",
"
171285.569611
\n",
"
6.625948e+05
\n",
"
5.220645e+05
\n",
"
4.140340e+05
\n",
"
6.895261e+05
\n",
"
1.054986e+06
\n",
"
9.524665e+05
\n",
"
8.048602e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
30
\n",
"
5760.506354
\n",
"
154821.974483
\n",
"
655525.150619
\n",
"
4.317146e+05
\n",
"
1.124190e+06
\n",
"
2.260838e+05
\n",
"
6.135078e+05
\n",
"
4.430098e+05
\n",
"
1.993302e+05
\n",
"
2.101516e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
31
\n",
"
4495.370500
\n",
"
39937.684328
\n",
"
156494.223044
\n",
"
1.601225e+05
\n",
"
4.273681e+05
\n",
"
3.515268e+05
\n",
"
4.448231e+05
\n",
"
2.566694e+05
\n",
"
7.195764e+05
\n",
"
4.164395e+05
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
32
\n",
"
9929.179761
\n",
"
74453.718579
\n",
"
371373.646586
\n",
"
1.127049e+06
\n",
"
8.716352e+05
\n",
"
7.048680e+05
\n",
"
4.415583e+05
\n",
"
9.356616e+05
\n",
"
5.691857e+05
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
33
\n",
"
0.000000
\n",
"
20348.062312
\n",
"
170218.459706
\n",
"
3.565538e+05
\n",
"
1.227990e+06
\n",
"
4.104408e+05
\n",
"
5.005702e+05
\n",
"
9.153730e+05
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
34
\n",
"
0.000000
\n",
"
60272.602312
\n",
"
244223.415605
\n",
"
6.362106e+05
\n",
"
7.611882e+05
\n",
"
4.975266e+05
\n",
"
1.682282e+06
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
35
\n",
"
0.000000
\n",
"
29157.569363
\n",
"
140597.374295
\n",
"
2.988598e+05
\n",
"
9.378148e+05
\n",
"
9.179868e+05
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
36
\n",
"
1740.439458
\n",
"
71028.928995
\n",
"
159736.350719
\n",
"
4.944280e+05
\n",
"
5.790932e+05
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
37
\n",
"
2417.098113
\n",
"
60756.081859
\n",
"
219417.111202
\n",
"
3.380309e+05
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
38
\n",
"
0.000000
\n",
"
97489.963585
\n",
"
259540.894156
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
39
\n",
"
0.000000
\n",
"
69383.491649
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
40
\n",
"
16522.338695
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
" \n",
"
\n",
"
40 rows × 40 columns
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
],
"text/plain": [
"development_period 1 2 3 4 \\\n",
"occurrence_period \n",
"1 0.000000 46985.029619 392545.850638 1.859461e+05 \n",
"2 64334.385165 103991.537490 134383.992047 2.940818e+05 \n",
"3 3142.606330 43202.971210 156562.667084 2.792880e+05 \n",
"4 0.000000 61865.265714 57298.919248 1.859610e+05 \n",
"5 5346.166482 54954.008437 264498.220981 2.036823e+05 \n",
"6 4222.377626 117425.751392 537503.282266 4.137136e+05 \n",
"7 0.000000 51733.238185 121187.914637 2.782337e+05 \n",
"8 0.000000 29161.090791 182951.743887 3.381624e+05 \n",
"9 0.000000 133157.263191 215744.746038 1.374049e+06 \n",
"10 0.000000 79641.863426 575926.050990 1.356863e+06 \n",
"11 0.000000 100416.983371 292038.198343 4.448307e+05 \n",
"12 0.000000 71522.558157 458885.392198 1.747373e+05 \n",
"13 0.000000 79064.667239 254608.617474 4.293419e+05 \n",
"14 0.000000 96277.421753 497171.088993 1.677511e+05 \n",
"15 0.000000 21066.291384 131006.302772 2.469400e+05 \n",
"16 0.000000 40871.450031 181169.969846 5.136258e+05 \n",
"17 21559.053170 98325.244742 111475.307366 6.413985e+05 \n",
"18 0.000000 51441.830587 135464.967542 2.466380e+05 \n",
"19 0.000000 70653.792105 453457.316593 4.380374e+05 \n",
"20 0.000000 143003.416713 780501.376194 3.219736e+05 \n",
"21 440.166014 96436.510110 932830.920427 6.675994e+05 \n",
"22 5071.193962 114720.424477 407660.107716 4.120153e+05 \n",
"23 0.000000 67368.580343 296994.656315 1.742078e+05 \n",
"24 2538.223611 60928.691028 474989.573924 2.655743e+05 \n",
"25 1179.531504 17397.734757 125719.238936 4.522247e+05 \n",
"26 18834.212213 54467.867400 301098.228443 1.205226e+06 \n",
"27 0.000000 16208.391804 129023.820713 3.686506e+05 \n",
"28 15268.662911 394082.054498 221508.422890 2.374703e+05 \n",
"29 3088.130242 11868.998623 171285.569611 6.625948e+05 \n",
"30 5760.506354 154821.974483 655525.150619 4.317146e+05 \n",
"31 4495.370500 39937.684328 156494.223044 1.601225e+05 \n",
"32 9929.179761 74453.718579 371373.646586 1.127049e+06 \n",
"33 0.000000 20348.062312 170218.459706 3.565538e+05 \n",
"34 0.000000 60272.602312 244223.415605 6.362106e+05 \n",
"35 0.000000 29157.569363 140597.374295 2.988598e+05 \n",
"36 1740.439458 71028.928995 159736.350719 4.944280e+05 \n",
"37 2417.098113 60756.081859 219417.111202 3.380309e+05 \n",
"38 0.000000 97489.963585 259540.894156 NaN \n",
"39 0.000000 69383.491649 NaN NaN \n",
"40 16522.338695 NaN NaN NaN \n",
"\n",
"development_period 5 6 7 8 \\\n",
"occurrence_period \n",
"1 7.006303e+05 2.610245e+05 3.329688e+05 2.646413e+05 \n",
"2 4.868833e+05 2.805029e+06 3.835312e+05 1.475784e+05 \n",
"3 5.374176e+05 4.028233e+05 6.908980e+05 4.429766e+05 \n",
"4 1.862006e+05 1.453144e+05 2.696107e+05 4.480261e+05 \n",
"5 4.472988e+05 2.633055e+05 3.387926e+05 3.150558e+05 \n",
"6 3.769690e+05 6.769168e+05 1.084063e+06 8.276801e+05 \n",
"7 3.766345e+05 5.262455e+05 4.970687e+05 6.972138e+05 \n",
"8 2.823336e+05 3.432786e+05 1.183421e+06 9.014267e+05 \n",
"9 7.828536e+05 7.966235e+05 4.644824e+05 9.741834e+05 \n",
"10 6.072203e+05 4.012266e+05 1.216483e+06 1.395769e+06 \n",
"11 5.126842e+05 3.632974e+05 1.872042e+06 8.211516e+05 \n",
"12 2.250982e+05 4.301923e+05 3.891993e+05 1.278298e+06 \n",
"13 1.876411e+06 5.398142e+05 6.579055e+05 8.572567e+05 \n",
"14 5.025259e+05 3.275906e+05 5.593842e+05 4.950296e+05 \n",
"15 1.794551e+05 2.232539e+05 4.005883e+05 1.158106e+06 \n",
"16 9.165714e+05 2.441091e+05 6.139660e+05 8.670557e+05 \n",
"17 6.213374e+05 7.985672e+05 1.252059e+06 9.138599e+05 \n",
"18 3.549195e+05 7.319261e+05 4.614343e+05 3.535514e+05 \n",
"19 1.137775e+06 1.579018e+06 9.959784e+05 8.986285e+05 \n",
"20 1.125306e+06 3.863964e+05 3.987071e+05 7.493505e+05 \n",
"21 8.898485e+05 5.927916e+05 1.256132e+06 1.541598e+06 \n",
"22 3.215467e+05 4.644149e+05 1.129388e+06 7.422531e+05 \n",
"23 6.093717e+05 6.336027e+05 4.269155e+05 1.150700e+06 \n",
"24 3.890088e+05 7.493399e+05 1.231399e+06 6.559668e+05 \n",
"25 5.405587e+05 6.677909e+05 1.147964e+06 1.547991e+06 \n",
"26 6.651762e+05 1.773508e+06 2.409755e+05 3.835268e+05 \n",
"27 5.212379e+05 2.942529e+05 4.663017e+05 5.628172e+05 \n",
"28 2.292117e+05 4.800493e+05 8.586132e+05 4.008364e+05 \n",
"29 5.220645e+05 4.140340e+05 6.895261e+05 1.054986e+06 \n",
"30 1.124190e+06 2.260838e+05 6.135078e+05 4.430098e+05 \n",
"31 4.273681e+05 3.515268e+05 4.448231e+05 2.566694e+05 \n",
"32 8.716352e+05 7.048680e+05 4.415583e+05 9.356616e+05 \n",
"33 1.227990e+06 4.104408e+05 5.005702e+05 9.153730e+05 \n",
"34 7.611882e+05 4.975266e+05 1.682282e+06 NaN \n",
"35 9.378148e+05 9.179868e+05 NaN NaN \n",
"36 5.790932e+05 NaN NaN NaN \n",
"37 NaN NaN NaN NaN \n",
"38 NaN NaN NaN NaN \n",
"39 NaN NaN NaN NaN \n",
"40 NaN NaN NaN NaN \n",
"\n",
"development_period 9 10 ... 31 \\\n",
"occurrence_period ... \n",
"1 6.057430e+05 1.434176e+05 ... 507751.595236 \n",
"2 2.536358e+05 5.385814e+05 ... 8745.529181 \n",
"3 7.212855e+05 8.362954e+05 ... 20938.965519 \n",
"4 1.742546e+05 9.715882e+05 ... 0.000000 \n",
"5 7.504150e+05 2.611304e+05 ... 587681.103745 \n",
"6 8.531432e+05 2.054070e+05 ... 0.000000 \n",
"7 7.314588e+05 6.290212e+05 ... 40683.584878 \n",
"8 1.167906e+06 4.107145e+05 ... 493829.570893 \n",
"9 5.535232e+05 5.008409e+05 ... 117212.190268 \n",
"10 4.876399e+05 2.889569e+05 ... 0.000000 \n",
"11 5.397643e+05 4.108131e+05 ... NaN \n",
"12 2.775127e+05 2.709438e+05 ... NaN \n",
"13 3.248639e+05 2.372064e+05 ... NaN \n",
"14 6.022564e+05 7.874864e+05 ... NaN \n",
"15 1.432307e+06 4.311331e+05 ... NaN \n",
"16 1.456116e+06 9.063431e+05 ... NaN \n",
"17 1.066295e+06 3.610327e+05 ... NaN \n",
"18 5.865144e+05 1.090865e+06 ... NaN \n",
"19 1.351723e+06 1.012969e+06 ... NaN \n",
"20 5.173210e+05 2.957905e+05 ... NaN \n",
"21 2.055776e+06 4.470712e+05 ... NaN \n",
"22 2.230668e+06 1.509081e+05 ... NaN \n",
"23 3.514760e+05 3.263753e+05 ... NaN \n",
"24 6.981326e+05 3.937930e+05 ... NaN \n",
"25 7.713320e+05 5.950225e+05 ... NaN \n",
"26 1.634412e+06 4.614016e+05 ... NaN \n",
"27 6.043287e+05 6.298926e+05 ... NaN \n",
"28 1.122428e+06 3.405180e+05 ... NaN \n",
"29 9.524665e+05 8.048602e+05 ... NaN \n",
"30 1.993302e+05 2.101516e+05 ... NaN \n",
"31 7.195764e+05 4.164395e+05 ... NaN \n",
"32 5.691857e+05 NaN ... NaN \n",
"33 NaN NaN ... NaN \n",
"34 NaN NaN ... NaN \n",
"35 NaN NaN ... NaN \n",
"36 NaN NaN ... NaN \n",
"37 NaN NaN ... NaN \n",
"38 NaN NaN ... NaN \n",
"39 NaN NaN ... NaN \n",
"40 NaN NaN ... NaN \n",
"\n",
"development_period 32 33 34 35 \\\n",
"occurrence_period \n",
"1 1.267975e+06 205780.737653 6226.894042 0.000000 \n",
"2 3.974022e+05 714117.521603 89465.857732 128332.630805 \n",
"3 0.000000e+00 0.000000 19996.986384 0.000000 \n",
"4 6.155031e+05 197934.940768 0.000000 0.000000 \n",
"5 2.201814e+04 87364.263674 0.000000 322793.116875 \n",
"6 1.900894e+06 0.000000 189803.137289 165066.293055 \n",
"7 4.737402e+05 0.000000 874535.741565 NaN \n",
"8 3.123278e+05 58747.903282 NaN NaN \n",
"9 3.179059e+05 NaN NaN NaN \n",
"10 NaN NaN NaN NaN \n",
"11 NaN NaN NaN NaN \n",
"12 NaN NaN NaN NaN \n",
"13 NaN NaN NaN NaN \n",
"14 NaN NaN NaN NaN \n",
"15 NaN NaN NaN NaN \n",
"16 NaN NaN NaN NaN \n",
"17 NaN NaN NaN NaN \n",
"18 NaN NaN NaN NaN \n",
"19 NaN NaN NaN NaN \n",
"20 NaN NaN NaN NaN \n",
"21 NaN NaN NaN NaN \n",
"22 NaN NaN NaN NaN \n",
"23 NaN NaN NaN NaN \n",
"24 NaN NaN NaN NaN \n",
"25 NaN NaN NaN NaN \n",
"26 NaN NaN NaN NaN \n",
"27 NaN NaN NaN NaN \n",
"28 NaN NaN NaN NaN \n",
"29 NaN NaN NaN NaN \n",
"30 NaN NaN NaN NaN \n",
"31 NaN NaN NaN NaN \n",
"32 NaN NaN NaN NaN \n",
"33 NaN NaN NaN NaN \n",
"34 NaN NaN NaN NaN \n",
"35 NaN NaN NaN NaN \n",
"36 NaN NaN NaN NaN \n",
"37 NaN NaN NaN NaN \n",
"38 NaN NaN NaN NaN \n",
"39 NaN NaN NaN NaN \n",
"40 NaN NaN NaN NaN \n",
"\n",
"development_period 36 37 38 39 \\\n",
"occurrence_period \n",
"1 5.087788e+05 55918.782513 0.00000 412516.399423 \n",
"2 5.301655e+05 349790.454839 12587.59026 90955.620959 \n",
"3 0.000000e+00 0.000000 0.00000 NaN \n",
"4 3.830643e+05 0.000000 NaN NaN \n",
"5 1.043557e+06 NaN NaN NaN \n",
"6 NaN NaN NaN NaN \n",
"7 NaN NaN NaN NaN \n",
"8 NaN NaN NaN NaN \n",
"9 NaN NaN NaN NaN \n",
"10 NaN NaN NaN NaN \n",
"11 NaN NaN NaN NaN \n",
"12 NaN NaN NaN NaN \n",
"13 NaN NaN NaN NaN \n",
"14 NaN NaN NaN NaN \n",
"15 NaN NaN NaN NaN \n",
"16 NaN NaN NaN NaN \n",
"17 NaN NaN NaN NaN \n",
"18 NaN NaN NaN NaN \n",
"19 NaN NaN NaN NaN \n",
"20 NaN NaN NaN NaN \n",
"21 NaN NaN NaN NaN \n",
"22 NaN NaN NaN NaN \n",
"23 NaN NaN NaN NaN \n",
"24 NaN NaN NaN NaN \n",
"25 NaN NaN NaN NaN \n",
"26 NaN NaN NaN NaN \n",
"27 NaN NaN NaN NaN \n",
"28 NaN NaN NaN NaN \n",
"29 NaN NaN NaN NaN \n",
"30 NaN NaN NaN NaN \n",
"31 NaN NaN NaN NaN \n",
"32 NaN NaN NaN NaN \n",
"33 NaN NaN NaN NaN \n",
"34 NaN NaN NaN NaN \n",
"35 NaN NaN NaN NaN \n",
"36 NaN NaN NaN NaN \n",
"37 NaN NaN NaN NaN \n",
"38 NaN NaN NaN NaN \n",
"39 NaN NaN NaN NaN \n",
"40 NaN NaN NaN NaN \n",
"\n",
"development_period 40 \n",
"occurrence_period \n",
"1 0.0 \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"5 NaN \n",
"6 NaN \n",
"7 NaN \n",
"8 NaN \n",
"9 NaN \n",
"10 NaN \n",
"11 NaN \n",
"12 NaN \n",
"13 NaN \n",
"14 NaN \n",
"15 NaN \n",
"16 NaN \n",
"17 NaN \n",
"18 NaN \n",
"19 NaN \n",
"20 NaN \n",
"21 NaN \n",
"22 NaN \n",
"23 NaN \n",
"24 NaN \n",
"25 NaN \n",
"26 NaN \n",
"27 NaN \n",
"28 NaN \n",
"29 NaN \n",
"30 NaN \n",
"31 NaN \n",
"32 NaN \n",
"33 NaN \n",
"34 NaN \n",
"35 NaN \n",
"36 NaN \n",
"37 NaN \n",
"38 NaN \n",
"39 NaN \n",
"40 NaN \n",
"\n",
"[40 rows x 40 columns]"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"triangle_fill.pivot(index=\"occurrence_period\", columns=\"development_period\", values=\"payments\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4z5pyKqi49W5"
},
"source": [
"## Claims Ultimate Projections\n",
"As demonstrated, it is fairly straightforward to transform claims data into the right format in SQL and create summaries for claims triangle projections. \n",
"\n",
"Where to from here for claims ultimates? For further analysis in Excel, in Python (similar tools exist in R), ``pandas`` can export to xlsx format with [``to_excel``](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_excel.html), or [xlwings](https://www.xlwings.org) can directly control Excel for additional VBA macro-style automation. \n",
"\n",
"Triangle methods can also be applied directly within Python without exporting to Excel or another tool. Consider for example, [chainladder](https://chainladder-python.readthedocs.io/en/latest/intro.html), a project led out of casact which provides a number of claims development models. Or, alternatively we can do further calculations using ``pandas``."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"id": "LRmzk1cP7T1d"
},
"outputs": [],
"source": [
"# Define a dataframe from the generated triangle\n",
"df_triangle_sort = triangle_fill.sort_values(['occurrence_period', 'development_period', 'payment_period'], \n",
" ascending=[True, True, True]).reset_index(drop=True)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"id": "jQ4QTazO7Tyq"
},
"outputs": [],
"source": [
"# Add a column for cumulative payment\n",
"\n",
"df_triangle_sort[\"payments_cumulative\"] = \\\n",
" df_triangle_sort.groupby(['occurrence_period'])['payments'] \\\n",
" .cumsum(axis = 0)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"id": "Vpf_buye7TT6"
},
"outputs": [],
"source": [
"#df_triangle_sort.head()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"id": "Bl7LxETz7TQ-"
},
"outputs": [],
"source": [
"# Probably don't need this step but prints the triangle with cumulative payments\n",
"# Useful for at least some life companies who manually do this in Excel\n",
"\n",
"IBNR_triangle_cumulative = \\\n",
" df_triangle_sort.pivot(index = \"occurrence_period\", columns = \"development_period\", \n",
" values = \"payments_cumulative\").fillna(0)\n",
"\n",
"#IBNR_triangle_cumulative"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 434
},
"id": "WiIS6ixocgWC",
"outputId": "122e1166-79d3-45b6-f7b7-3216fb40b62e"
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAGQCAYAAABVgSDEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZwcZZ348c9TZ9/d03PfM8nkDjlIOMMp5ypZUMDFixUUr3W99tA9XNfV9fiti663oCCgiCiKgAqKyCkQEgjkvpO575m+u87n90dPLiAQJCQx1Pv1qtdTXT1d9fTTM99+5ltPPSWklAQCgUDg2KIc6QoEAoFA4NALgnsgEAgcg4LgHggEAsegILgHAoHAMSgI7oFAIHAM0o50BQBqampkR0fHka5GIBAI/EVZtWrVqJSy9sWeOyqCe0dHBytXrjzS1QgEAoG/KEKIXQd6LkjLBAKBwDEoCO6BQCBwDAqCeyAQCByDguAeCAQCx6AjGtyFEMuFENdlMpkjWY1AIBA45hzR4C6lvFtK+b5kMnkkqxEIBALHnCAtEwgEAsego2KceyAQCBxuUkpKjkfR9vClREpeUB7MjOi251Oyval9ufuse5QdD89/6Z2cOauW2Q2JQ/Su9gqCeyAQOOxcz6dvssSusSK7xgqM5CxsT+J4Pq7nY3sS1/NxPB/Hl/gvEyBfii8lRdsjb7kULJd82SVvVZZXsdtDpipqBME9EAgcvWzXJ1d2yE0Fz+zUeq7sMlm0K4F8vBLM+yZKuM+LrIaqoKsCTVXQp9Z1VUFTBaoQCPHn1UsgCBsq8ZBGfTxELKQRM6eWkEbEUFGm9q8IgSIqrxEChBC83GE1VRAxNMK6SthQiRgqYb1ShgwVTXnpPejqa5MdD4J7IBB4RaSUDGTKPNszyeqeSZ7pmWR9f5a85b7k6+IhjY7qKPObk1y0oJH2dJT26gjt1VHq4ibKywTBwCtzRIO7EGI5sLyrq+tIViMQOGpJKSk7lR5x3nLxfIk/lRP2/L35YU9K5O48MUzli+XedaaeYE8xtf/d2+Sex5K9r2XqtZ4PW4ZzrO6uBPThnAVUettzmhK85fhmamMm8ZBGPKQTD1V6xYmp9VTYIBHWEH9u9zvwiomj4R6qS5culcHEYYFjneV69E2UmCg6TBRsxov2/mXB2ZPKyFtTZdl9QfriSOqojrCoNcWi1hQLW1PMbUpgauqRrtbrlhBilZRy6Ys9F6RlAoHXmJSSO1f38YXfbGRkqse7L0NVSEcNUhGdZFinORUmHopXer9mpSdcyROraIqCqkzlhUUlF60olXVlKj8s9s0ZAzz/MezXg969KvZ7vPfnd+ed29IRqqLGa9RKgUMtCO6BwGtobV+G/7xrHSt3TbCwJcknL5xNTcwgHTWoilTKiKG+btMVUkp8v4TnlTCM6j9vH55Eej6KEfwHsa8guAdeV8qOR8n2cH25J2+9Z5GVIXeNqTAx88B/Gq7jUMxMkB8dpzg0QXksiz2Rx8mU8C0XZGWo31C2zETR5k1CcHUiRHJiCOXXW1Glii01RqXChNRQpYoyVY6Y/QybvXuOJacGW+9OzJz8litonjVn6jkPzytNLUV8v4wvHaTvIqX7vHUb6bv4vo2UDr5v40+V0rcrJf4+A7uncvBIPAkeYioHv3+KaG/NJFK6SN8F6VWOLb3K4jv40kF4OaRfwHULeF5xaikAEk2Lc+YZqw/Y5r7t4Y2XccdKuGNl3N3r42W8CYv4Gc0kL+w8+F+E14EguAeOGZVeoI3vlyk7FjtGcmweyrN5qMCWkTJbhm36Jj1eLoP9r6f9kcUN26f2ZeG7Fq5dwnPLgAtCAhLEVHBLAEkfANVK0vXw1wDoVIH41E59oLD3GK508HBxqZQOZcq45NxRsrn+vcFZOvjSxfE9HCn51dNb8AcVHN/FluCh4U4tNgZFIpSIUtivjFAgio0J6MjnDe6TiD2Lh4aHut8ixQGG6u05+zq1rojKcgDfld+kxReE3BqEYyJsE8UyEGUDpRyi7/ePHfAwuP5+20RYQ6sOYTTH0BbUYnalDnjcl+LaHmP9BWpbYyiv0ZDEIyU4oRo4KkkpcZwxyuUBLGuQTGGA7tExuscLjOYcio5PyZGUHCg5SmVxVSzXYLSUZqhYjycr/6YrwqMhMkxzbIDG2CBRrYgi/KlFoikKmhZCV010zWBOapy0sJAlgcxLhKUhfA3pKriKW+kSaT5oEnQPYbi4qo1FiZxlMZqrIREWtKRCmDqVHq30AQ9P2PhqEYmDlC5FX2VEphiRKYb9FOMyzgRpJqligiomSZMVr2zuJU36xFyPmOdVStcn5vmEXFCkABSEFCAFilQAgZACVYLwJY7tU7RcipZH3vbIOx5Z28OVUyN1qJTPjxzn1MXpjJoHrNdbemyink9JtygaFiXdoqTblHQLW3P3+S/ghcq6w0Qox0Qkx3g4R1m394zkOaCpLx/hSaQQ6HaEUCZFOJMilEkRmkxh5mMIFDad9xusRO4VtfNu05LT+OSJn/yzXvtqBSdUA0eclBLbHqZY6qZc6sV1M7hubr+lUC6wfVxn54RJf1ZltJRitFTNSKmajFUNvDAnqwhJSPMI6z5hHcI6dNRKzql2mF7jMr1GoSOtEzLagXZcN4vvV1IGvm/j5xz8QYEcUhFDUbSxNIodAsBWMwwXehnK91Oq2kjsxHWEq8v7Hd+TKiU3RMkOUXJDIEzaWnyqY6GpE5Mqvh9mh1PPFquRfqeKcTfGuBdlwg1T8vSpoAqKlKg+JHyXlO/R5iikHJWEVSRme8Rtj4iloPuVQKzKyneMr7g4uoWr2uihSSwlT07mmJAZ8qJASbEoKWUsxcHHxxc+HhJf+JTcGBPlRibLDRTsaiw3gWRv7lpVbKJGjlSsiKE6CCGnFh8FH6FU1gUSLzHEQCg3dRZ26nMXoPgaqmPw1Tk2trLvWHiB4koSg2XCE07lCwdR+cdo6gtnz2MfFF8ifJ8qT06tS4TnI3yJ4u1+DML3Eb4P0t97kjhxHqZ63J4jlyNZColxRpq2UogNk5E9eLkSSA98F/x9Sum95O92aXgr7Nq4z+ucqfWpx3OWw8kffLk/kUMuCO6BQ8b3HcrlXoqlXZSKuyiVeyiVuqeWHnx/b2DMWHG6cy305tvpzbfTnZ3LQD6FREFIEEJSF/dpTmnMb4vQVlNFR02atnSU+kSIqKkR0QWa4iLlVPpkarHtUUqlXkrlyhfJUN8ATmYSP++gWglCuTbMbAfhbCeaVQWAFB5OfJRy0w6yyigb125jaGiIVEuSaZctpBx5Ew/2v5HHN4exh0pTgTzCrMYajmtKMFMYxLsLFAaKdDs+2xwPz5UIb2/PMjW17FWaWg6OBVj4B3jWAAxWn3cv0YRKnRehxjLotNKkSgqxosREY+z8c1jX67C2x+G5bovhbCVwVUVUFreF6EhHmFYdY0Ztkq6aBOmoUTnZK8H3Jb4n8Vwf35X4vo/nSnzXx3V9ipMWuQmL/IRFfrxMftwiP1HGKk71yoWPL1x84eDLETxvB57sRyoaUoRgd/pnz/AdMfXZCBTHwZjMIoQG6CA0EBoCtbKOBkKtPK+pqJqKpmmomoquKzTUJ2ip2U6N0U01WzBKPZAbgOwoZIH+AzSrmQQjOlWXfeu1zxAjUQAlA4o2taiVUtUr5YHSWq+xQ56WEUKcDryDyhfHXCnlqS/3miAt85dBSonrZrGsoT1BvFjcSWkqmJetPjzfZ+tkJyPFGopuirJspOTXUHST5OwoOcvEnFQQJUnUF0Qk1Go61ZpKFAXd8fFKHu/80iIUZZBSqaey/3LP1Ho3tj2G71tI6UxVTKAX6whlOwhlO9BLNah2As1OotkpVBcMZTOGWI+pbKDgnYWVOgetOYzZmoK0yUR5gKHeHex8dhW969eip2oZnHsuv9VbGTYFftpEJnUQgmtCMabVxNCA7DPjeE+PoU46OKZCb7PJmPDxFPBVQTqs06IL2ieGSfb3IrLjOE4JWbTQSh6q64F0cPwyvm8DPkJKFECpDGCkkkhhv0z5i/7V+j7p8c2ErRdPLxS1EJde9HkATKAdQZsLTZZP2t93/3L/g73sWYpKekQqDp5qo4QclJAHuoOn2Dh+Ccsp8UpjjZg6OyCkT4M9wfmTB44RGhYGRQyKaJT3m6pAAr6t4Noqnozj+VE8J1R5XAa/7FUCsFCpjCudWp8KysIwmHb3Xa+o7ofLS6VlDiq4CyFuAC4ChqWU8/fZfiHwf4AKfF9K+aV9nrsEqJdSfu/l9h8E96OH5xWZnFxJPr8Ryx7GsoawrGFsaxjLHsL39x+nrWlxwuEOFL2TR3vn88t1deya2NtTURVBVUQnFdaZ4Wh0DbmESnt7n6ouCMXAiFioZhbFGEFqfaSm34VeKqFOCtQJ0LMRzFwMLWOiKjGMyy9BHUsiRmOIkRDCrqQSfFXixicwtM2YYhMRZy3h8mYUKj3UyUgnz9ReyLNuJ35fN7JvF34uQ9kMUwpFGapp5umZJzDQ0AK6srcXKWXlpKjj0TLqcsJOm9kDLpoPPWmVjZ0Gg/UqIcunajzD9C0b6di5kc7+bXSM96IgsRSNoUgaV1H3LkLFVTRcRcEVKv6e3it7TnzuGY/yMsMlfaGQ0yNkzCh5I0LeCFMwwxRCKoXaLRRSAyi6hykcdOGxb9CWSKrsKuZPzD/wAV4BTYChCAwFDAHStsgOD4PnkjJVmjWf5lIWY3QSZSyLnCwjbA88EPL5p3wPLREOo1al0FJVqOk0aiL+kr1roWk0fflLB3z+SDoUwf0MIA/cvDu4CyFUYDNwHtALPAW8TUq5fur524H3SClf9ixFENyPHN93yeWeY3z8McYnHieTeXpPj1hRwphm/T5LHaZRKUOhZiKRDkYKJrc80c2tT3aTKTkc15zkqmUdLGmvIhUxiJsqfRsnefzOzYx0F4lVu3TUriJUWgO57YjcOEoRRFFBFk2UYgg9K1FzhUredB9S0VDCVSjxRiInfxhHga1xhXUJlbFQPx3OQ5yWfZBZxZ0AWOhsVRrZ6jWwhUY2au30pZrJR+IUw1HykTjlUBTLMNm3qyd8Sc1YlpbBDG39GVoHi0RcBUVoqHoSxUghfRsvtw2Z2wz25NRAQUldcYK547swfBdPKHRXtTFYM5NC7SxEup2QqlKkTN4oQwxCIQ0zpGCGVHRD4Ls2tuVg2xau7eC4Nq7j4rqVxUPiSIkr5dSFSRIFiYqPgcTEQ5MeKhJLlNmY3MH61A4s1aXe0tB8uSd47lmmHk8rCd41IFDwUYVf2e/UiWcVyaZSI2uKrShTXwrKPnMdCEBxHRTHQXFtxPPiiur7NEwWaBnPEbMqv19CkxgpFT0dRk8nUJLViFQdSlUjSnULSqIKEQqjRMII7VVkkIVATSRQq6pQUymUcPjP39dR5lWfUJVSPiyE6Hje5hOBrVLK7VMHuQ24GFgvhGgDMgcT2AOHn2WNMDz8a8Yn/sTExJN4Xh6AeGwera1/S7pqGYnEIjQtfsCLa57pnuCGX+/gN2sHkVJy7uw4b19axdx6m0l7Pb2Tgzy5MsfY43X4g9V4kQKFuWuY+bt7qds6smc/rmpgm2HQwoS0KIaeQCSiKPUpRDiNE4pSMsMUQwZFDUp+iYKfYzxzJ1L2MqvUw+X5fpr1CXwJW/1GfqydyZOJ41hRu4ihdBOlcHTP8UzbJV50idgKjVmIjviErTJRyydiSaJln8YJj5AjgRgQQxgumlJC9Yqo9jCp4T+SyG/BVySuquLpOo6m4qkqVrqKp2Z1YEejlKIhbFXgCvCUIRDD+zdiEeziwX9uqudh2GUSVhnNKqOXS2hWEb1cqgRVKoFbTeZ5enaJR5slZVVwdqHINZNZjrPtF92vlCB9kL5A6pUSOfXYE3uei+4oM23L3vcgdBWtKo6ejqNVxREhDUIqEJr6gX1+dzQVfckijI5p6NNnY3TNRa2pfd1evHU4vJoTqs1Azz6Pe4GTptbfA9z4Ui8WQrwPeB9AW1vbq6hG4GBlMqvp7b2ZoeHfIKVDONxGff1FpNPLSCVPAjVFyfYYmdjAMztuZSRnM1rwGC1IxgoKo0Wd/mKcsVKMQslE0XwSrWWMNoUnwir3DykUh6I0TpicsS7MzH6HvClYMU/Q3LuKd3//l6i+z4bZC4mmuqiNTicd7UBTNGzfZY02zLNxi21RQU6TFBSBpWo4ioIpHMKiTEzAPHuUN2YfY2l+AwBPx+fwvbq3c1ft2QyatUAliNdmHGb1SRomRqkfy1A/Oko8M44vp8aqK5UpXlVNRVNUDNPEMMNomokXFeSMIjm1RE6UsISLL3bnol985M6LEYCiKpiKiqaqVBkqnbKEnBxFzQ0TKo8ScnOEKGCqNjoequ+hSr+yCA9V9VE1D0WVe+OlCYR254cVUBT6TMEtdTp3JaL4wIX5En877NJWDOO67Yz7UaRqgmKCYiBVA9QQqCZoOuhhMOOVRQvxvMQ7oVNTtDTUozc0oNXXo6ZSQXA+ir0mo2WklJ85iJ+5TggxACw3DGPJa1GP1yMpJaN5m/7JEuMFm7F8ge7hNfQMrWEsX6Dg1mOL/6Ts1VD2FEq2T9nxKNpPPO/GBa377VfRJJ6hIU0VmVQxOxWSrRppzaUha9G8zSM9lCM8UkKxVBTFpzaSZaE9wnl3PUhhYhMDDc3kG7oYlxmS7Yt4urWBwXiGghgh5A3TbA3RaQ1yWnmYVClHlZMl5eZIurk9qYDdduid/Cj2blYop1OyEkQ2Zzl/TQ+Ku4Gwlyfh5tF1BUXTkJqOqyo4zZKRFhdX+Pj4ePiVgP08ilRQ9xkOKPFRRBlD5DBFBkEZIRyksEGplL5w8IWDJ2xcXFw8bCQWgrIisJRK6aqV8wJ+HDwh8AS4VEoPDU/olROAYvfFRZVUvy/25t/3v4Z0b+kI0BG8uXox717wPlpbT92/9xx4XXk1wb2P/SNAy9S2gyalvBu4e+nSpde8inq8Lm0dzrNxMEvvRIneieJUWVkvO88fLqeiiuNIhgU18ThVYZOmiF65wcDUjQVCusJYdgXd+Z1kzemMh2fQLSWeoSJMhflVUU6OGMzesQ751Aqym8B9qAYpGlCUGFJaKLIIIZeBtEtWn2BweBsDw7uw0wqkmwBQ2EEi6jCLz3NpXy/m7hEvU3IyRcGtxvITWH4NPX6MHY6OZwtkWSLLHk4WRj0o1PaTaLqNYk2IbEpBSgVFKui+zrgXIuSFCHkqgr3H8ISHK1x84VdGeEyNDPHxkaIy9juv58noGTJmhoyeoagVn9+JfQmCkK9i+gohCaaUhKQkJCEkwUBB00xUM44WqUI1YmhmHNVMoGphVEWbmqhLoAgFRSh7Hu/eNnWYqULsKWNGjIunX0xtpPYV/jYFjkWvJrg/BcwQQnRSCepXAG8/JLUKHFDZ8fjyvRu58bGde7YlwzotVWGmVessaSoSF+sJ8wwJPUNL3XzmTLuUtoZlKMre3qjrS9YXSjyVKbBiMsMTY/0MGQugZgGmECyKh1luwHFOkeSuLfQ+vIKh7dsZ9KMgVKQsg1wL8nl53BxUjUAVkqjlkLTKtNZP0lKToS6Ux9JjjCnVZGQtK+wuSm6SjJ8g54XJ+iZlxcVRHTzVwdU8fFVCpDI0TVBZVDTE1L3dNaAlv38VXMXCVQqgjuLqeUxlkqgyTkxkiFLAABQkylSWZfeehDARqomqhKcCbRRNaUVRYqhGHM1IVBY9iq5F0LUIhh5DN6LoagRDNTEiUYyGJtRYlEDgSDqo4C6E+AlwFlAjhOgFPiOl/IEQ4sPAfVSGQt4gpVz3Sg4e3KzjlXmud5KP/3Q120YKXHlKO1ec0EZ1aIRy7g+MjPyOTPYZACKRTmprL6Cp8XIikY49r7d9nwfGctwxNMGDw2OomQkS+QyNhUHOyG2lzVWptg2YHCc3OoJrW2zarwYaQhFEVJsaZZS4nMTwXVTfB19BtUG1JEpOITxaRtZWMTb/ZIaMNBukx6gvsaQEb8/ukJqPJzw84eOJAp6ozGiiCQcDF1O6hKVDVDrEpENC2oRwiFAiTBmDEmXVYkJ3GNVcRjRJo+PzxnGJL3XUUAy1pg2l9SyU2nZEtBYi1RBOQbgKQikIJUENrucLHFuCuWX+Ajiez7f+uJVvPLCV2pjJF988nY7QPQwP/4Z8oRJ+4/F51NacT23dBUQjXbi2RXZkhMnhQdb09PJcdw+DQ4OEM+Ok8pNEivkXHCccjWDqAsO3MClSLQpYThs9yhtw1CZq8lto33UvqbFdL1pPT2i4epSybrKpvYmNs5vQjBAqOj4+o6ER+iMDDEWGKKtlwtJhhmMxy3KYaTs02gZVToySTFDGxMKkjEFBmgyrCqO6ZFR3yOhlslqRCbVIxizjKXt/hwVwYcs5/L9zvvaafBaBwNHkVY9zf63s03O/ZsuWLUesHkezrcN5PnH7ap7rzXDxwjquXvQ4E8M/wPPypFInkoqfjWrNIT9SZqyvh7GeXYz29pAb3X/YnaeoyGSKuoRBk2kTdXsIuwNUCYsqpYBR8nAmNErjBvnJGLvMZexsuxDLrKJqfAP1gw9QMEsMVlczUNvAmBJl3MoTCWeYZs0g4cxnMt7PUHojCS9cmdZWscma/WD0Etd6qPVsop6B4oUJuQlUL02eFDmRJCcilIUkL1xGlBLjepaskaVkTOAbk4h9TnxqtkFjRtIyYlFX1OnoXEjXaW9i2uyTaYw2oqv64f6YAoEj4qgN7rsFPfcX8n3JD/+0ky/fu5GIofCRZX1M07+O6+YwtXPY/GgV2V0DeJPje17jqRqZqloGU7WMV9WihjVOD09yLt3MmHgKPbsDW0bIWjUMjM6gkK8jZ8cpaiZ2NIwTN3FiOoR8kAru9hTVQ/czmJ5kR1sdXrSauB8BYDA0iGulmTN2PFZ4GCs8iEBBoUyT0k+VGCejldmuK/TpChMaFDSbjJ6jpJYP9Lb3MB1oHBc0jvs0jUkaxyVN45KGCYiVwZw9m6orriBx0UVBfjvwuhUE978w/ZMl/unnz/LY1jGWtha5ouvrVOn9dOun8timxUx78DE06eHVx9AiCsmopD7i0KaWSFkOxWw1mUI1lhem6CcpetUU/GpsXRJu2MCm6Q73p4/nk+4XiGtjCOWFvwNWPsxjK85G1apQUPDxcdQcZSVHRi+RUwSWkcfWyjjCxlEdbMXBURwivklJtbCUyslWIRWkU4VrVxMuRliYc2krFKnJTJIYHce0PExHYkqNWEMrqcYOqkNVqJEoSjiCEp66SjEcRolEMNraCM2fH4yxDrzuHbVT/gYnVPcnpeSuZ/v5t1+uwXJt/mbu3ZzX/ABPi6XcXf4QS/64hjmbHyBWl+CK+P0kDQvbD9OXXUTfyAK22LMZdVuRqAh8DFEinN5OqHEl9XVrMWoGuZc38iOuorO0k8mdNTzbsIjhWDV1wzmqx3K4GHiugeOY+HqEcT3DQKSf7sR2HHXvyBjVVzF8A93XAIFQNBr8dpaPnslZE3P4SXQHN8osvp1mgRHj8uwW5m98AnNL5Utca2jAnDWb0OkzMWfOwpw1E7OjA2EE9+gMBA6FoOd+lJgoWHzyZw/zu40205I7uOa4W/CrpuPVvZ/aUYNdN32XUnaSpXOmM6t0P5tKb6XXXsy4t/tKQh9dZsDrhcaVMGsLjbUTRHQXfNC2K9xgXsl9bcvp7OumYeJxYp5HQ14n6lZy1AWtwFB4iOHwMCOhEWzFJupGiDlxEk6ChJ1E9w2yxjjb4zspuGmczCIimcVc4dVwKQYh4HFTsrVJ5YTCJjpWP4q3cgX4PubcOSTfdBGJN/4VemPjkWzuQOCYEKRljmKOk+Xup+7mc7/TyFphLpx+P80zDZbPuZo5yS4e+vH3WH3vfURiMWYnZhFXe6jSemkx1vBA6SKeybYTzvchojvQjx+iqSNHwpDYFoTWKiRXC7blU/zXO/+ZkZoumsa2csG6ZzCljq04TBqTFPUsnlaozKPuRjH9MBE3QsrRGTfH2REdZiQ8QknRqNFnMSt1HCfUn8KcSAc1GycJPTcKto/RaaKo2ymtfpTCw48gbRu9tZXERW8iedFFmNOnH+nmDgSOKUdtcH89j5bJ5zezZcdNfOsRyf3dy6iJjtO4IMcFCy7inbUmd/zu02Tu28k0N0dXUqElMkpKGwRgXEbZlUuxcTJNsdEjPTtLormM9MHYoBJ7TBBaI9jUMp3vvvltbJg2E1s3OHH7Ohb2bGI0nMf0kqTsymev41AtJ0hhUdIKbIoM82y0RC5STVdqPic1LeHCrpPpSLYghMAvOuQe7iH/aB/SlUi7m9Izt+MNVD5DramR+BvOIbn8IkILFgS58UDgNXLUBvfdXk89d8saYfv2a3l80xNcv+ZKhvLVNFWPMjOtcH6hj4EtT1GVn+D06m46YhOoQuJIk4xXhxRlrh8/jrahMRqWTKAsKCLDoA6DsUJnsLuDzekZbGntYGdrB0nTYEM8RSYcZdmWFUTyj5O0k0yzVY5nDYbi0mh3ocsZ/DQ5yk3hbtLhLq5cciaXzTuVmBEDKneet3dlsbZNUt4ygdOXAxScvlXYG+9GqzGJLF1K5ISlRJYsQW9uPrKNHAi8TgTB/QiTUlLMjrBx9XfZuekeNva0saO/jbQ7SbU9huZXLtmMhIqcXt/L/MgQJS/MFutcVvrTONv4MalMgYcH51MzvRfrbAdfg5HeFtblltKdOolEczPTFEkqn6fcN8jWbIa7jjuBsq4zvfsnNE8OclomydniSRQFHO9jpKxOHg+NcK1XoLahg38+fw6nTk+D5eMM5Clvy2Btm8TuyYFXmUVRloewdzxFeF6a2GkLiSxZglYbzGUSCBwJQXA/Aka7d/LE7Tcx0buDibFRnOdNwWIpJuWqOFp6kB2REd4pLc62+/FRWV1YzgpxPpvkCt47eD/hrUUm5ypkl/vIpKR3dDpO6O00hprYPjTK1sksY4pKLhQhG4qQDYUZSlQBFp3dN/LWAZ23OA/RgM24/UHK8hQGVcmjnk00arKsPk6dUPAyNl7WQtpTE48J0JtjmNNT6HUqw1/8JOUNa2j60hdJLl9+2Ns0EH9V4QIAACAASURBVAjs76gN7sdqzr1cyHPLx99LOT9JtK6EmnYQWoh7Jy9ko9vAxLQ4//3wV6kdGGHiIpW3lIZRpcM26zweyb6VXcYkdcOPcvqzTzG4OM7WS2oZSVfTW2plwF1MxqhjyJfkQxG8fSYDAxBeDtUdJWyNcemGtfxT8TGiMsSY89c40VPwLTDcfT5zRaAmDNSkuV+p1YQxO5MoYQ1nYIDuq9+D099P89e+Svzssw9ziwYCgRdz1Ab33Y6lnruUknu+9mW2PPkIXRfvpLo5Rr/yST7z+zBFz0VvfYBrnv0Nyx9QqFpYpmHOOBnvVH5beiuj+XbG9bVMRIZ5+LhxJpIzKMb2D6Qhp0yiVMT3hyiK7WjeBNVWienbe6kpSGS8kyW5es4JVaOWI7iyjd3zHg5rsMq10VviXPJXM4jXRVGiOkI58AlPa/t2ut/zXvxcjtbvfJvICSe8ls0XCARegaP2IqZj0XP338vmJx6l8cRhmuvrub3vKn7xrMpJoQe5MPlzztyYJ/9gFdHGMvEZLfzO/Ai/cjrY2tHEjjqfgtFOYuy3aE4v06wB4s5ONtmj1OTh5MFp6L5Pnz7JnI5ZzOjbTtddz1EuwuOnnUIiPotTc2misgVKRdTqMtsyCoMlyXeiZfrx+dzl87l0SctBvZfS2nX0XHMNKArtN99EaO7c17j1AoHAoRIE90NopHsnf7zpOhItRcxpNr98rJ3T7B/x76GniWNjZQ26/9SICGnc84ZPcVtbku1N7biaQrhcYtbIDxiQK4gokrMSNg9nt6L4ed4mluH1QtzQ0QcWc7pcxezffo3SsEnvjE4yp1/M+X4HcSeCGnWJLQkRPXMJf/zFLjZuG+D2qEW0OsY9b1/MtNrYQb2XwpMr6P3Qh1CTSdpu+AFGR8dr23iBQOCQCoL7IeKUy9zz1S8hNQu7Ns1Jq3dyqfgFI3qEda1nsPSkq9j+lTvxck/wjx/9Z1bPnE06W2LJNpvT8nfxdOIO1poGi8IunbrHiv4k31M6WDXewA4HutxhJgcuoT67ltbVt1GoamXizVfSKTsJeTpKU5jUWe2E59WAArf8ahOZx/p5ynQ5+8w2PvVXswnp6su+Dy+TIfOruxj+ylfQ21pp+/730RsaDkMLBgKBQymYW+YQcDyHb375H0mNbuKMtgxLytvYqDZy5fRPc/Jp72DSlfzqppu48k+P8d3L3sVoIsm771tH82Q9VscXua1hCFUxeFeVRbetsHKohq+O5vktHRQJs8S16Bm+hFR2J7N33Y/15k9R7beRkILRKpeeJU1sM2Dds91s+NVzdBcsikjOM3Xe8Z4FXLDgpS/1l65L4bHHmLzzTvJ/eABp24SXLqHlG99Aq6o6TK0YCAQOpeCE6qswUhzlPx6+ndE/bOJT5d+xKD1AUTG5ue5NPL7k71nn6AzYLnO2b+Hr//tZnp67iC3pZhYPhNk8bS6rZ3+N9ZEcsw2fS5MW94wniI4uZm4mwYRMktA05j25kR31byPq5plZW6JO60CVChvUYX7i+ozYcTwBw6pkXJUICe2uwgzd4EN/u4DFcw48Br28eTOZO39F5u678EZGUVMpEhddRPKSSwjNmxtcWRoIHOWCE6qHmJSSL6x+ghvv+RPvyO/gK+ZtRCIODzYs4fOtH2ZddBpKAQzFI5HP8fnr/w8vmkKdcJglR7j1DMHW2l+gC8HlSZuFqsaTm86gK9MGSCLFQaZv20XtrnHWLPwH2uKSWeFaTF9nmxjlDlmiUKhmi+bTZ1bGpHcaBm/pqOaSpS3Mml2NpoI3OUl582a8sTHcsXG88b1led16yuvXg6YRO/NMkpdcTPzMM4NZGQOBY0QQ3F+hDfkSn1i9g+zvn+Xn/IhF4e1sUFr52HH/yrOpOey+Lb0mBMeHTD75pW+TyGZ4bEYzDy/q45nOLLpUOBmd8xszyFw9a9aeATqcUOqh+cGVmBkbp34xO5f9I8vCIeKY9DHJzSKL7dexzQmxPeTSngjxkYXNXHZyG23VkT11zD/0ENs//gn8YvGFb0BV0dJp9OZm6v/1X0hcdBFaOn2YWi8QCBwuQXA/SAXP49qdQ3xvcz8tT27kp8q1pJQ8fzfj37ij7jzSumS5N8KyTT9i8UX/QWI4wapvPUikeyN3L9W45Zw+dNfk9NG5vKFtLVU1OXr6ZnDfaIJkaiMfvGELRtFDNkbInvQxwpEmjifCqMhxkxjmj2qK85VWflXKUzQkn33TXK5c1vGC1Elp3Tp6P/4JjLY2UpddhlZTjZpOo1VXSjWZRCjKEWrFQCBwuATB/SDcN5rhXzf30j9Rouup9dwsP0+VmuOajn+ndXgt9y19mIVdH4XrzgIhGC2l+fn3VmDYLitmKvzyFJuTdp7LmUqIxqU/x1NVnt14Ej8ObWLxSC9/d6eHmKazc+5SdP1CZnpNlLD5pejj2zLM38yazdKNk9wqc6SjOjdfdQKL2l54otPp66PnAx9ATSVpve576HV1h7+xAoHAUSEI7i+ht2zz71t6uXc0S6cvmfXUc9wgv0ydMskV8/+HeRsf47JzCyyY/mEY34Hsf4YHm65i8xd+h0KYmr7vsqEF3rXqn6hf9BjJOXdRKKZYuf54fpt8mtPXWHRl23ji0jYE81jmzCLuhdns5vldWaF/UQfX1tXwjYe2sl73OKWtim+/eylV0Rfmxb1slu73vx9Ztmi/4YYgsAcCr3NBcD+AMdvlnKc2YfuS9ycUHrl7Bdf7/0OzMspbF1xLsSS54JQnOW7B/UgEDzzyFbZuayW6cTZeogo9exP1eYusfiXJc35CpH4zA4PTeGbXbIqTf+Kybe2U64+jkDBZ4nTQ6rfSg8sj0scph7jqowtY+WAvn35kM2O65CNnTudjF8xCeZGpAqRt0/v3H8He1U3b9ddjzphxBFosEAgcTYJx7gfwi6EJMq7H/9VZfOv2Ndzo/w9tyjDvnvk5Voe7+GbyfbS1/x1/6F3BEz++lvPu7qem+V0MNswknP8j87dtoefkM6i98Idg5Nmw+SQGBxo5bv2z9Mw8n3KtyWl2DbO8LiDM8MI0sZYUzo830bKomu/88Dl+7RYJmSo/fNfxnDnrxXviUkoGPv1pik8+SdP/+zLRk086rO0UCASOTsE49xchpeQNT23CnRzHf3QDN/tfpl0Z4V/rP8TNcy7jre63Oc9cy50b41zwi16O2yXZPOsSehvPw7CeY8ammygub8U4YT05K8Lm9WfijxjE8kXG6uqJ+TEutWegk0aPDpF+318xlLP52jdXsU5x2ap7OALm1cS4/r0n0pQKH7CuI1//OqPf/g61H/0INR/84GFspUAgcKQF49xfoefyJTYO52l+ciu3+1+kTR3lxvjbuXnu5aScLVysPcCO9SfwsW88i6+qDB7/HnoTC9HcncyruofCP7qYqXUMDHSwa+tSlJLAMjWscIylXhOLnQ5AEEvfzYMLr+L2761gVb5IOQQRRfCmmQ38zentnNRZ/aJpmN0m77iD0W9/h+Rll1L9gQ8ctvYJBAJHvyC4v4gf7hwmsnKA253P0m6O8UTtlXxm3tVoSP6Fz6KUmjnu+ucYSSpET/gvNtpJdAaZdc6tlOp34GQa2bTqdArZKjwUZEjFkII3O/XE/TmoYgu3VUtuGD2L7B+3o0voclX+anYdH7h6EYb28kMV848+xsB/fIbosmU0fuYzwdWkgUBgP0Fwf56M5XDnb7eyvPAI06KjbG95F/8w/wP4JZs3yjtoUUokbwmj2pJNZ1+GVUwi9AnazvsfXDPP8HNvYfNQCnQLqSrYoswyT7DIXoQkjZ1czQdz01gzCl2azocWNaE/M4lpKFzx7oVoBwjsUkqszVsoPPoI+UcepbhqFWZXF83/9zWErh/mVgoEAke7ILjvQ0rJe257Bjlu8bfh+7A8lV+c/GF2jpRZHNO4OHMb6kNpwqu7uencGDPtU3C1Eh3nXovRJ9iy5bMMGr3IUBFQkGqWvy8n8byzQIzyp+goXxifTlaVfHBxG/90+TyeuHM7z4xZXPDxxWjG/rM2etkshT/9ifwjj1B45FHc4WEAzJkzSV/5Lqqvugo1dnBT+AYCgdeXILjv4+t/2MrKDSMkZ4aZt7OHnUob146UMYTgGv+bxHuh7hdFVnWpaPUXUNg5TOtpdxC922CN8m+M1axDGkUwoboU4lJrOp7sYExdx3fzbfzelyQiKj+5ciknTa9mpDvH6vt7mHNqIy2z9l6U5BcK9H/qX8g98AB4HkoiQfTUU4mdfhrR005Dr68/gq0UCAT+EgTBfcovn+nlq/dvxmuK8M+J3xFSPK6f/jZ84AvTosTX3E/0BzolXeVbb/S54jkVO/8z9J9aPNf+ccZr1+BrZexkibNGFzLHa8anxO+1ldxudbAhLDmlI8033nk8NTET3/P54482EopqnHrp3qGg3uQk3e9/P+W166i+6t3E3nAO4QXHIbTgowoEAgcviBjAih3jfPLna2huirF9XoKTV95DjjC3NZ3DCYkIM4a+hPi5QnQEfnppPR15E3diNRE/zPb2dzJetxZheIRNh3cNXYCOiiI28g01z/1+J6Oqwd+/oYuPnTsTdWr0y9P3dTPSneP8984jFK3kzJ3hYXre817snTtp+b+vET/33CPZLIFA4C/YIQ/uQggF+ByQAFZKKW861Mc4lHaMFnjfLStpSYeZXFjFYsOlqTzIzxovYF4yzmdyj2E99RDpxzWseYu4Z9pa3vbgLBAKTtUbGK/fjGYIltptzC9Mp1+MEmUN39TquN+ZQdg0uPFtx3P27L0XIa26dydP3rWdriV1dC2pbLd7++i++mrc0VFav/ddoqeeeqSaJBAIHAMOanpAIcQNQohhIcTa522/UAixSQixVQjxqanNFwMtgAP0HtrqHloTBZurblyBKgTXXDyHft+ndecDhKXN5vBcPvynXzG45n9J3qri1yb49VtXceK6WoRdRo2dwnjjIDFF4/L8ycx2qvi9/ix96mr+W6/nXqeF9uoIv/7oGXsCu5SSx3+5jSfu3M6ME+o59+rKDTGsbdvY9Y534E1O0n7DD4LAHggEXrWD7bn/EPgmcPPuDUIIFfgWcB6VIP6UEOIuYBbwJynl94QQPwf+cEhrfAh94vbV9GfKfPbti/j3vkEA/nrsQcaUBAu6xxmcWMGJ6x1UVyF/9SBbu+uY3xdBDZ1IvlYyx2vmeLeTuPprfqSGAJPb/TY22A2c2VXFd648kYhRaWLpSx7+6WbWPtTH3NOaOPPtlXliSmvW0nPNNaBrtN9yC6FZM49giwQCgWPFQQV3KeXDQoiO520+EdgqpdwOIIS4jUqvvQewp37GO9A+hRDvA94H0NbW9ooqfShYrscjW0ZZcFwd/zA0hA/E3TznjT3O2ok6egY3cH5qDG2Hgn15mfXRCDPvr8XXa9AiiznbhwY/RLP5Ye5STmHS7+Qhdxo9fhXvPqWNTy+fvye/7ns+D9y8kU1PDrLo3FZOvbQLIQSFFSvo/eCHUJNJ2m68AaO9/bC3QyAQODa9mrs2NFMJ5Lv1Tm37BXCBEOIbwMMHerGU8jop5VIp5dLa2gPf5/O1snU4j+tLHpc21XplfPm/lFdgSJftXpKzTi2jPeRRXigYOUNh1/2dCCkIhS+mTgnTLlI06P/LltAMVsoufuvMptev4rN/PZf/vPi4PYHdc3zuu34dm54c5MTlnXsCe+6BP9JzzfvQGhpo/8mtQWAPBAKH1CE/oSqlLALvOZifPZKzQj7Tl0ECXW1JtjgOaV3lks03k7FNvJp60o+uoyR1MpdbbLlvFtGMwkjdXOJOksVRCCkrGEsl+H7meH7vzEJqJje8c+l+J04dy+O331tDz/pxTrt8BgvPaUVKydj3v8/w/15LaN48Wq+/Dq3qhTfeCAQCgVfj1fTc+4DWfR63TG07aFLKu6WU70smk6+iGn+eR3aN485MsMVxAPg7NUMqu4ONuVqazAnGt8exZvuMrq2j2KOwubVAk3sOSd0jqvg8Ey3xX5mT+bUzl3AkzM8/tGy/wG4VHe7++mp6N4xz9rtms/CcVnzLYuBTn2L4K/9L/MILaL/l5iCwBwKB18SrCe5PATOEEJ1CCAO4ArjrlexACLFcCHFdJpN5FdX486wZzOK1x5geNtCAmXd8GkXApshc1uyaRyRfJrNU0LcuRSnkMVHbgSp15hoGzzHOL6wQf3Bm0hBV+fVHz2Je094vqJGeHLd/cSVDO7Kc9555zF3WhDM8zK53XUnmV3dR+9GP0HzttSjhA0/lGwgEAq/GwQ6F/AnwODBLCNErhHiPlNIFPgzcB2wAbpdSrnslBz9SPXcpJf2uC4pgyHKY3beVueZORvwU28NzWbz+WTxDsnmoCVdReHDJMAsGz8VUJJpqs9LYwFNOGzHF5e6Pv4GGZGjPftc90scdX16FZ3tc/InFzFhaT2nNWnZedjnW1q00f+Pr1Hzwg8EsjoFA4DV1sKNl3naA7b8BfnNIa3QYDGYtnIQOUpL34Yz1D9FkjPOgdyLL1j1IcmicgZNNcsMRtPpJimacqlIjnSGFx8019Pg1jMoonzm/g6pYpfftWB4P3bqJTU8O0jK7ivOunkckYZC559cM/Nu/oVVX0/GTWwnNmnWE330gEHg9eF3eZu/eHSP4aRPDdjhjyzOcaOxCAP07PRavGUYg6E3HoV/yQEeKhQNLAHBDIxQVnyfsBtoTKn975lwAxgcK3Hf9WsYHCpxwUSdL39iBQDJ87VcZu+46wkuX0PL1r6Ol04f1fQYCgdevV5Nzf9WOVFrmge5xZEKna6SHrrEBTvSfYagUxey3USM+Vm2UieEkpzb8DSkjyuyRE6nRJL2RIZ5wI+RliM9ddjyKIti8YpCffWklpZzNX//9Ik68qBN700Z2veOdjF13HanLL6f9hhuCwB4IBA6r1+XEYWuzWYjHmTnUywU7fkO6M8vD2Q7mVA/h92n0nhSiw1lEa6iT5nwnmhfGTQwz4lis9lpZNq2KZZ01PHjrJtY93Efj9CTnv3c+Yc1m8PP/zcStt6KmUjR+6YskL744yK8HAoHD7nWXlikWi0TEJLob4tLf3cmMdGX6m63ZNBPlerpEL4N6lLNip7HJ6EGb6EQTPoqe41E/iY3GP587m7u+vpr+LZMsPq+NEy/upPDre9j2P1/BGxuj6m1XUPvRj6IegSGegUAgAK+ztEyxWOT7P7yJkVQV4WyR9mwvsUaLgVKMgVgjtd0j5Kc10mydSUiNcWPtXdRlukiES6zSRtjoN7J8XgNrb9rM4I4M5109l+OP8+l797vp/+Sn0Jua6PjZz2j4j/8IAnsgEDiiXjdpmVKpxC233MKuXJ5sJMb8bc+i+pJQ0mXDYB3jE2mqymU2d1axIHISa9QdaNlmBILu8GbWi+moisK05/KUPMHyD81Hv/tGdtx8M2osRsN//f/27jy8qTLtH/j3ydKkS7qvtOm+F8quCCpQxwEFVLCIyzss1Rn1lXFhXkRff4goLiM6gI7jBsjMoKgDyiaCDIM4CL4DKFtburC0pXRv0iVpsz6/P5Jih2lalpOe5PT+XFcv0jTL/RySu0+fnPM9SxGcnw8mE/X3JSGEABB55t5fBzF1Nfb6+nqcSLseAFBQ8iUC4zvAOXCqNQJDdYXo9FUhRD4OcibHu3EbMLT2ZsgVRtQoOIo6AzCiQ44wlRIz/mc48P7LaP7oIwTPmIHknV8j5J57qLETQjyG5Jdluhp7bW0tZs2ahVKlH2CyYeyFnxAY34kKUzBqeCSGV9eiakgqEtUjcFx+DGazH3wsGuj8KlEoz4avHbg9Mhh3Pz0S5tUr0bZrFyIXLULMSy9ShAAhxONIeqrZ2dmJ9evXX2zsMUnJ6FTJ4KPvgNLMoQq04lxLCKJMdVDYgYioW2DjFqyJ+geuv/BLyJgNDf7+KDNy3BERgvsWjITxk3XQffIJQufNQ9i8uWIPkRBCeiTp5r5r1y7U1NTgnnvuQUZGBjbX6wGlDJkNZVAo7ACAyvYgZNZWoyo9BVr5YJTie9Sp9YhsSYXJtw772sMRrVLipSevR/u2zWhYuRKB06YhcuH/iDw6QghxTdJr7rW1tUhOTkZmZiYA4MsLzQCA/6rcDlWQFZ02OVqMMsQ2cwxK+S90WNuxOeJ75NbeDAAoksnRJAeW5A+Baf93qHl+CfzHjcOgl5fR+johxKNJes1dp9MhpNt6+IkWI5jBgrymw/CLNGOrdSJ81BogdhiCVbEo7vwWh0J0yK4bC4XSiAOKIIyMD8bNlhpUP7UA6sxMxK5aBebj45Z6CSFEKJKdfnZ0dKCzsxPBwcEAgE6bHW2Mw7epHX4mM2wBChT75MAX/lANuRet5iYcj/weibqhkNtV+FZph5FxPDMiCNWP/jcUUZHQfvA+5AH+Io+MEEL6JtnmrtfrAeDizH1znQ6QMYzSnQAAlCAZnMmQbgqDjzoUx3TfYn9EB0Zd+AVsMjsOKhV44vpBCP7fxwGFAvGrV0MRFibaeAgh5EpI9iAmnU4H4Ofmvq1BD3CO+5u/hsLXjhP2DKhMHYjWTkKT6QLqgo/BahsETUck9qjNGBzoiylrX4BN34L4v/4FPlptb09HCCEeRbIfqF7a3I+2GiFrtSCv8wgQynCWxSOpTQ6FKhg/Ne3B6bh2DL0wEWZwnFba8PKgFlhKSzHo9d/DNydH8PoIIcSdJPuBql6vh1qthlqthsFqQ5PFipimGsgNdpz1S4CdyZHqPwxNHVXQ2atxxN8Hic25OK6yYU5sBAI2rYEqMxMBt9wieG2EEOJukl1z776nzI4GPcAYxusPw26RoQjpUJnNiJJHo6ztKAwJrUhvvAEyyOAns2O61ghz+WmEFcyjuF5CiFcaEM19S70esHM80LYDZh8FynkCtG0ygHNc6DiNf0WYkF17M+oVdtwSGQbZlo+giI5G4G23iTwKQgi5OpJs7na7HXq9/uJukD+2GaFqM2IkylEZFA8bUyCdx0NvqoXVtxMyawb8rQEYLJchK4vB+K9/IXT2bDClUuSREELI1ZFkc29vb4fNZkNISAgazBY0W2zIaSyF1QyUKFOhsnQiJiATVcYyFA6yIKd2IpiMI1CtRMC3H0MWEIDge2aKPQxCCLlqkmzu3feU2dPYCgCY0vwdWowBKEMiYlpsYGCo6TiD86FyDGpPRJaPHBEjAtH+zTcIuXcW5AEBYg6BEEKuiaSbe3BwsGP/djvHA4ZdOO2TABsUSDNHotPajiJ1C9L048Bgh58ciCj5GpDLEfKr2SKPgBBCro0k93PvOjo1ODgYh/VtCGtvRjAz4LQ6GWqbEbGaIbjQcQZnBxmQ1jga8T5y8Bg/GL78HEFTp0IZFSloPYQQ0t8kuZ+7TqdDYGAgqg2taLEDNzT+BANX4bQsEVEtRiiU/rhgPIsAZSoUdiUSfGSIlp0A7+hAWME8QWshhBAxSHZZJjg4GN8e/BwAcH/jDhyxZMMKBeLbg2Hndhzy0SO9cRzkfo2wKmQwb/oI/jffBFVamsjVE0LItZNscw/R+GKXgUFut2FixxFUyBLgx42I88tGo6kahWH+COmMQpyKgwW0w9bUhLCCB8UunRBCBCG55m61WtHW1oaQ9nKU+CUgqrMBFihQKY9DtKEe/gFa1BrPQqkOBADE2kLhd/BDqHNy4Hf9dSJXTwghwpBcc78Y9VuzDw2qcGS1n8Yh+2BYmBKROkdDP8oNiDNrYJV3gkMJ2+lihD1YQFEDhBDJkFxz79oNUmFrhpkpMKq9CIXIgB+MiJSno8Pahu2B8RhkiIM1sApmQx2UsbHQ/PKXIldOCCHCkVxz1zube/sgR0xvkrEa9SwSSZZzCA5KR73xLFr8GUI7ohHgr4P89D8ROmcOmEKy0faEkAFIcs1dd/Yo5LCiMfdeAICsncPKFAhoVsFH7ovTlkZo0QkAiJcr4NdeguC7Z4hZMiGECE7w5s4Ym8AY+ydj7D3G2AShH78vuopCBMuMOB85AgBQY4qCH4zQWNJh53Zs0kQj0SqDVWZCjCkSkfdPh8yfzotKCJGWy2rujLG1jLF6xtjJS66fzBgrYYyVM8aecV7NAbQDUAM4L2y5fag9Ab3RjJCQUFS0WxBoakMDj0AGP43ggEzojVU44TMIgzpC0Rp4FrbWYIQ99FC/lkgIIf3hcmfu6wBM7n4FY0wO4B0AtwHIBnAfYywbwD8557cBWARgqXClXoaD70CHYITEZ+NsYwuGNpTBypRQ6zsRrI5GnfEClHaO0I4o8OAK+MSEQebj068lEkJIf7is5s45/w5A8yVXXwegnHN+hnNuBvApgDs553bnz3UAVK4ekzH2G8bYYcbY4YaGhqso/RKtNeg4vg2dUCE4PApVnR1IaKyBL+8A2jMAAPsVDAmyVjDIEKJpRsQNidf+vIQQ4oGuZc09FkBVt+/PA4hljM1gjL0P4K8A/ujqzpzzDzjnozjnoyIiIq6hDKdDH0LH/QA4AsOq5XKEm1qgQTsCfbNgMrdgS3ACUmwdsDErkhVKhA0Nv/bnJYQQDyT4/n+c8y8AfHE5t2WMTQMwLTU19dqe1GwADq+FftAk4AJgVfijQ25BkLUNHTYVonwT0dJcDH1ECgZZrGgIqMBNxmQoNS7/sCCEEK92LTP3agDabt/HOa+7bIKlQh7bAHTooIudAABo1nMAgK/NBLPdDz5yNcpsrVByILgzAoaQMjBr4rU9JyGEeLBrae6HAKQxxpIYYz4A7gWw9UoeQJA8d7sdOPgnIHYkdFwDtVqN6sZOgHPAaoeMqcDtNmwJCESqpRMyyCEPK4df6DX+tUAIIR7scneF3ADgIIAMxth5xtiDnHMrgPkAdgEoBvA557zwSp5ckJl76U6g+TRww2PQ6/UICQnBOb0RWlMt2q0+UMpUMOvP4Af/RKTb2mCHDWGacUf8EAAAIABJREFURoTmRF39cxJCiIe7rDV3zvl9Lq7fAWCHoBVdqYPvAEFaIOtO6Pa+i8iwCPxks+JG3RGEp52Bj985NJaPhS00CpFcjYaAKgyxhyE4K1TUsgkhxJ28+zR7F34CKvYD1z8MO5NBr9dDw31xwdeG6/QnoPI1w8dPj4M+dvjYrQi0hKFWcxpaQzIUQfRhKiFEurz7NHvF2wEfDTBiNtra2mCz2eDfocQFP4bMltNgTAFwYHNIIoZ0tkDG5egMLYPKliTsQAghxMN4d3BY3v8DHv0eUAddzHFXNQO1Pj6IM9aAMRkAjnPqKKTZ7eCwQx1ejoCgDHHrJoQQN/PuZRnGgJAEAD/nuBs7lBhkrofdDMjA4Ii6AUK5Gk1+FzBI3Ymw1GwhyieEEI/l3csy3XQ1d73aF7ntJWi1hgBgAAdCLC3wtYeiJvA0Em1hCMygI1MJIdLm3csy3ej1egQo/VCnUWJoWwmM1lgAAAfHYJMeMq5ATeBpJHVoIQ+isDBCiLR597JMNzqdDhq7GlXhDLltJTBa45w/4UiTOZq5OaQMAbZkOlcqIUTypLMs06xDgFmF07IWDG0rgY1HO58ECLQHoEVdj3D/Vvj5p1/zcxFCiKeTxLKMxWJBW3sbNHY1rJZqBNvaIWPh4OAAOOS2EJwPKkOcjx3hCblil0sIIW4niebetazjy5QYZLkAAFDJQ8E5BxiDjCtRE1iOOLkCwck0cyeESJ8k1ty79pTpULcj3VIFC5fBTxkMDjs4HOvrNZrTSDJFQRHme811E0KIp5PEmntzbSMA4Ky9CUPbSnDBFgo/RRAcJ4Vi6PBphcK3BWFW+jCVEDIwSGJZprGyDjLOUG5oxJD2UjSZ4iBncueyjAy1mrOI87HBT50idqmEENIvJNHcdfXN8LXLofDlCLG2obMj9t9+fi6oELE+doRE54hUISGE9C9JNHd9mx4yuwWDNB0AAJvJkdXOnT+/EFSOOKUdwVraU4YQMjB4/QeqtjYzWm1GmI06JKnbYGFy2BAFO7eDwxEc1qZqgpap4BcdL1zxhBDiwbz+A9WWkjqYmRXoNCDRXIkqdTSUPmFotxng3FEGfowh2qKFTC6JP1QIIaRPXt/tGkod+7UruA1phtOoV4bCTxmEZpvx4m1ifTj8FPRhKiFk4PD65t5YWQsASEqKQpC1HQaZLwIUgWi2d1y8TayPBYGhmWKVSAgh/c6rm7utzYwLumoAgDbBHwDQaVDDV+GPpm7NPc7HjqAo2lOGEDJweHVzN51tQYO9AcxmRahSDxNTwtoYAgBogNlxI+5o7oGDBotYKSGE9C+vbu7W5k60MANUcjn8Ggtxyj8ZNkMkAKBJzS/eLoZroPKlE3QQQgYOr27ullTALJchNCQEoY0nUeifDDBHc2+LCbx4Oz9OJ8QmhAwsXr2fe9m/DoArfZAa4wdfSztqVBHwUYTAYjchNCnu4u0C/NOEKpkQQryCV+/nHp09BJDJkKDSAwBaFQEIUAagzdqK5KifIwg0tKcMIWSA8eplGebr2EMmtLMSJqYEt9sRLA9Aq7UdcUHBF28XFDNErBIJIUQUXt3cu3LcVS1lKA5IhkxvQZDcHy1WAzTdhuYfSCfoIIQMLF7f3Bk4fBqLcCwgA7zRF0qZEk3WDigN1ou3UyoDe3kUQgiRHq9u7qNHj8ZDM26BwtyKY5oMyA2OfdzruA32VjN+zoUkhJCBxaube0BAAGJZPQDgeEA61FbHDL1cqUKHvlzM0gghRFQKsQu4ZjVHYZH5oFEZDH+5YymmMjAYBtMPXv6rixBCrp73t78LR1ERkIiI9iZEyHzQYW2DPCQMdsWPYldGCCGicUtzZ4z5M8YOM8amuuPxL7LbgZpjOOaXikB9C6KYEu3WFgQH+UMVUoyLge6EEDLAXFZzZ4ytZYzVM8ZOXnL9ZMZYCWOsnDH2TLcfLQLwuZCF9kh3FjC14qAmG2ixIEymRrulBZl+5yBTmN3+9IQQ4qkud+a+DsDk7lcwxuQA3gFwG4BsAPcxxrIZY7cCKAJQL2CdPbvwEwDgp8BMdLT6IEjmi1arAVrfE+B2719xIoSQq3VZH6hyzr9jjCVecvV1AMo552cAgDH2KYA7AQQA8Iej4XcwxnZwzu2XPiZj7DcAfgMA8fFXeW7ThlOwy1Uo8UvCcLMdjDE02E0I8z2OjqZkADR7J4QMTNcyvY0FUNXt+/MAYjnnz3HOnwTwCYAPe2rsAMA5/4BzPopzPioiIuLqKpj4HLbctw9Wuwx+dg0AoEZmha/vWVjbcq/uMQkhRALctnbBOV/HOd/e222uNRUSjKHMxCFrMyOB2wAAbUEtYIzDh42+usckhBAJuJbmXg1A2+37OOd1l+1aUyEB4FxLC0J0OsRzO2zcCt+IKtjMfggMopk7IWTgupbmfghAGmMsiTHmA+BeAFuv5AGueeYO4KzBBHWLAVrOYbC0ICWmEsb6TIRGaa76MQkhxNtd7q6QGwAcBJDBGDvPGHuQc24FMB/ALgDFAD7nnBdeyZMLMXM/zxWwt3MMggwGawvCw5pgqM1GSLQfKFuGEDJQXe7eMve5uH4HgB2CVnQFOm12NCj8EdChQqjMD1W2s5Cr7DDUZSM4yt95KzqQiRAy8Hj1afbOm8xgRit8uRwquQpGmQ7thgjIeAx8NUqBqyWEEO/h1afZqzCYwFotiHEOw6JqQEt9DkKi/cAYzdgJIQOXV8/cy2rrIGuzIM65tG7xq4O5NhvB0f6935EQQiTOq2fuTfV1ULR2ItNiAABY/Btgqc1ASJSfkGUSQojX8eoAlnvPH0VEUwNSrCaYbB1oU/rCbvFDMDV3QsgA59XNXe6rQwNCnLtB6tFkdhxT5dgNkhBCBi6vXnM/HnQTACDExw/tFj2aW9MBBgRG+ApZJiGEeB2vXnM/Vm+HDICfPBAGawssbVmQBSohl3v1HySEEHLNvLoLpshbcWf9IciYAh3QI8Smhm+YWuyyCCFEdF7d3MdkxmF8wDkAgMmnEyF2hsBIWpIhhBCvXnNPHjEa6ijHkahGtRpyMITF0D7uhBDi1WvuLaYWhCpCwLkdbXJHCuQgLaVBEkKIVy/LnNGXwU8eDoO1FWbu2P0xNj5Q5KoIIUR8Xt3cqxq+g7IjEgZrC2xWPxhlHH4BPmKXRQghovPq5m5p+RE+nREwWPWAxR8GFYWFEUII4OUfqP4i9HEobYFot7RAYfKDxU8ucIWEEOKdvPoDVZw1AQAMthYouT+guaxzjxBCiOR59bKMqbIBAGD1sYExGXxCVCJXRAghnsGrmzs3OZZhbCrHjN0/4t+PTqXzdRBCBiqvbu4BN45Bs60WZrkPLOAIDv/PNEg6RTYhZCDy6ubuNzwCe6o/htXmD52MI0xDu0ESQgjg5c3d2NoCu80Ki9kPzXI7QvyouRNCCODlu0K2NtYDAGwmXzTLOML86QNVQggBvHxXyLamRgAAY4FolnOE+CuFLI8QQryWVy/LtDU6doVksgA0yewI9adlGUIIAby8ufsFBSNkUBbA1OhQM/j50EFMhBACeHlzz7pxArS5c2FTy6GhWTshhFzk1c0dAPS1RhjVDCHU3Akh5CKvbu6cc+hqjdArOK23E0JIN17d3I0tZlhMNjSAPkwlhJDuvLq562oNAIALNis1d0II6cbLm7sRAHDebkEoHZ1KCCEXCd7cGWNZjLH3GGMbGWOPCv343ckVMoTE+aOdgT5QJYSQbi6ruTPG1jLG6hljJy+5fjJjrIQxVs4YewYAOOfFnPNHANwDYJzwJf8s+8ZBGP5gFsCAMGruhBBy0eXO3NcBmNz9CsaYHMA7AG4DkA3gPsZYtvNndwD4CsAOwSp1odlgBkAzd0II6e6ymjvn/DsAzZdcfR2Acs75Gc65GcCnAO503n4r5/w2AA+4ekzG2G8YY4cZY4cbGhqurnr83NzpA1VCCPnZtRyvHwugqtv35wFczxibAGAGABV6mblzzj8A8AEAjBo16qrPqaEzUnMnhJBLCR7Gwjn/FsC3l3Nbxtg0ANNSU1Ov+vma2h3NPdiXEiEJIaTLtewtUw1A2+37OOd1l+1aI38Bx8w9yFcJhdyr9+okhBBBXUtHPAQgjTGWxBjzAXAvgK1X8gDXerIOAGgymGlPGUIIucTl7gq5AcBBABmMsfOMsQc551YA8wHsAlAM4HPOeeGVPLkgM3eDuY89ZdhVPzYhhHiry1pz55zf5+L6HeiH3R1702wwQxvqJ2YJhBDicbz6HKqAo7lT9AAhhPw7rz6HKuccOmNfyzKEEDLwePXMvd1khcXG6QNVQgi5hFfP3Cl6gBBCeubVO4f/HD1ABzARQkh3Xt3cf44eUIlcCSGEeBavXnPvih6gvWUIIeTfefWae9fMPYSWZQgh5N949bJMVKAaN6dHIEAleP4ZIYR4Na/uincOi8Wdw2LFLoMQQjyOV6+5E0II6ZlXr7kTQgjpmVevuRNCCOkZNXdCCJEgau6EECJB9IEqIYRIEH2gSgghEkTLMoQQIkGMcy52DWCMNQCocPHjcACN/VjOlfDk2gDPro9quzpU29WRam0JnPOInn7gEc29N4yxw5zzUWLX0RNPrg3w7PqotqtDtV2dgVgbLcsQQogEUXMnhBAJ8obm/oHYBfTCk2sDPLs+qu3qUG1XZ8DV5vFr7oQQQq6cN8zcCSGEXCFq7oQQIkEe3dwZY5MZYyWMsXLG2DNi19MdY+wcY+wEY+woY+ywyLWsZYzVM8ZOdrsulDG2mzFW5vw3xINqe4ExVu3cdkcZY7eLVJuWMbaXMVbEGCtkjD3hvF70bddLbaJvO8aYmjH2L8bYMWdtS53XJzHG/s/5fv2MMdbvJzfupbZ1jLGz3bbbsP6urVuNcsbYT4yx7c7v3bPdOOce+QVADuA0gGQAPgCOAcgWu65u9Z0DEC52Hc5abgYwAsDJbte9DuAZ5+VnAPzeg2p7AcD/eMB2iwEwwnlZA6AUQLYnbLteahN92wFgAAKcl5UA/g/AGACfA7jXef17AB71oNrWAcgX+zXnrGsBgE8AbHd+75bt5skz9+sAlHPOz3DOzQA+BXCnyDV5JM75dwCaL7n6TgB/dl7+M4C7+rUoJxe1eQTOeQ3n/Efn5TYAxQBi4QHbrpfaRMcd2p3fKp1fHEAegI3O68Xabq5q8wiMsTgAUwCsdn7P4Kbt5snNPRZAVbfvz8NDXtxOHMA3jLEjjLHfiF1MD6I45zXOy7UAosQspgfzGWPHncs2oiwZdccYSwQwHI6Znkdtu0tqAzxg2zmXFo4CqAewG46/svWcc6vzJqK9Xy+tjXPetd1edm63FYwxlRi1AVgJ4GkAduf3YXDTdvPk5u7pbuScjwBwG4DHGGM3i12QK9zx957HzF4AvAsgBcAwADUA3hSzGMZYAIBNAJ7knLd2/5nY266H2jxi23HObZzzYQDi4PgrO1OMOnpyaW2MscEAnoWjxtEAQgEs6u+6GGNTAdRzzo/0x/N5cnOvBqDt9n2c8zqPwDmvdv5bD+BLOF7gnqSOMRYDAM5/60Wu5yLOeZ3zDWgH8CFE3HaMMSUczfNjzvkXzqs9Ytv1VJsnbTtnPXoAewHcACCYMaZw/kj092u32iY7l7k459wE4COIs93GAbiDMXYOjmXmPACr4Kbt5snN/RCANOcnyT4A7gWwVeSaAACMMX/GmKbrMoBfAjjZ+7363VYAc5yX5wDYImIt/6arcTpNh0jbzrneuQZAMef8D91+JPq2c1WbJ2w7xlgEYyzYedkXwK1wfCawF0C+82ZibbeeajvV7Zc1g2NNu9+3G+f8Wc55HOc8EY5+9g/O+QNw13YT+5PjPj5Vvh2OvQROA3hO7Hq61ZUMx947xwAUil0bgA1w/IlugWPN7kE41vL2ACgD8HcAoR5U218BnABwHI5GGiNSbTfCseRyHMBR59ftnrDteqlN9G0HIBfAT84aTgJ43nl9MoB/ASgH8DcAKg+q7R/O7XYSwHo496gR6wvABPy8t4xbthvFDxBCiAR58rIMIYSQq0TNnRBCJIiaOyGESBA1d0IIkSBq7oQQIkHU3AkhRIKouZN+4Yyq/R9PfTwhMMaG9UcEL2NsR9eBOpd5e4/bVsT9qLkTIpxhcBxo5BbMQcY5v507Dq0nxCVq7sRtGGPPMcZKGWP7AWQ4r0thjO10pmn+kzGWyRgLYoxVMMZkztv4M8aqGGPKnm7fw/MMY4z94Ez8+7IrKZEx9i1jbJXz5AwnGWPXOa9/gTH2Z+fjVTDGZjDGXmeOk6/sdGa6gDE2kjG2z/ncu7odwv4tY+z3zHFSiFLG2E3OiIwXAcxyPt8sF9vkBcbYXxljB5njZCC/7vazhYyxQ85xdJ1kIpE5TljzFziOrtQyx4liwp0/X+Ac20nG2JO9bXsywIh5CC59SfcLwEg4Dvf2AxAIx6HV/wPHYf1pzttcD0e+BuDI05jovDwLwGrnZVe3fwHOk1bAcaj5eOflFwGsdF7+FsCHzss3w3nCEOd998OR9T0UgBHAbc6ffQlH9ogSwAEAEd1qWtvtcd90Xr4dwN+dl+cC+GMf2+UFOGIrfAGEwxFrPQiOfKIP4DjZhAzAdmfNiXDEw47p9hjnnPft2sb+AALgiMIY7mrbi/2aoK/+/epKIiNEaDcB+JJzbgQAxthWAGoAYwH8zZHfBADoytX+DI4GuheOUKU/OeNuXd0ezscNAhDMOd/nvOrPcORzdNkAOE4awhgL7LZW/TXn3MIYOwHHWb92Oq8/AUdDzQAwGMBu53PL4cjI6dKVIHnEefsrsYVz3gGggzG2F46EwhvhaPA/OW8TACANQCWACs75Dz08zo1wbGMDADDGvoBju8vwn9ueDDDU3El/ksFxYoKezl+5FcArjLFQOGae/4BjRurq9pfr0vCkru9NAMA5tzPGLJzzruvtcLwvGIBCzvkNLh7X5PzXhit/H/VUEwPwKuf8/e4/YI4TdRiu8PEJoTV34jbfAbiLMebrjEeeBsfyx1nG2Ezg4geEQwGAO06NdgiOfOvt3JFZ3urq9l045y0AdIyxm5xX/QrAvm43meW8740AWpy3vxwlACIYYzc4769kjOX0cZ82OM532pc7meNEzmFwpAMeArALQIHzrxUwxmIZY5F9PM4/4djGfswRPT3deV1P254MMDRzJ27BOf+RMfYZHOvL9XA0MAB4AMC7jLH/B8e69qfO2wCOpZm/wdHwcBm37zIHwHuMMT8AZwDM6/azTsbYT877FlxB/WbGWD6At5xLPwo4TpFW2Mvd9gJ4hjlO8fYq5/wzF7c77rxtOICXOOcXAFxgjGUBOOhcBmoH8F9w/GXgqsYfGWPr4IiLBRyfU/wEAC62PRlAKPKXSBZj7Fs4Pkg8LHYtXRhjLwBo55y/IXYtRNpoWYYQQiSIZu6EuAFjbB6AJy65+nvO+WNi1EMGHmruhBAiQbQsQwghEkTNnRBCJIiaOyGESBA1d0IIkSBq7oQQIkHU3AkhRIKouRNCiARRcyeEEAmi5k4IIRJEzZ0QQiSImjshhEjQgMlzP3LkSKRCoVgNx6nT6JcaIcRd7ABOWq3Wh0aOHFkvVhEDprkrFIrV0dHRWRERETqZTEZpaYQQt7Db7ayhoSG7trZ2NYA7xKpjIM1gB0dERLRSYyeEuJNMJuMREREtcKwSiFeHmE/ez2TU2Akh/cHZa0TtrwOpuRNCyIBBzb0fzZw5MzE0NHRoWlpajti1CO2ll16KTEtLy0lNTc158cUXI8Wux916+r+cMmVKcmZmZnZmZmZ2bGzskMzMzGwxaxRSeXm58vrrr09PSUnJSU1NzXnppZciAWDBggWDIiMjc7vG/dlnnwWJXatQjEYjGzJkSFZGRkZ2ampqzlNPPTUIAO65556EjIyM7PT09OzJkycnt7S0eGQfHTBnYjp27Ni5oUOHNopZw9dffx2g0Wjs8+bNSyorKysUsxYhHTp0SH3//fen/Pjjj8Vqtdo+fvz49A8++KBi8ODBJrFrc5e+/i9//etfxwUFBdneeOONGjHqE1pFRYWyqqpKeeONNxp1Op1s+PDh2Zs2bSr/+OOPQwMCAmwvvvhindg1Cs1ut6OtrU0WFBRkN5lMbPTo0RkrVqyoGj58eEdoaKgdAB566KG4yMhI6yuvvFJ76f2PHTsWPnTo0MR+L9xpwOwt093Cjce0pbVtfkI+Znq0xrg8f2hVb7e57bbb2ktKSnyEfN7uiooXaQ3tpYKOyz8g3Zid9ftex3XixAnf4cOHt2s0GjsAjBs3ru3TTz8NXrZsmdvf8M0bS7WWWoOgY1ZG+xtD89Ov+v/Sbrdj27Ztobt37y4Rsq4ue/5SrG2ubhd0zKGxAcZbZme5HHNCQoIlISHBAgAhISH2lJSUjsrKSre9lrtb/P1ibbmuXNDxpoakGl8a91Kv/8cymQxBQUF2ADCbzcxqtTLGGLoau91uR0dHh4wxJmRpgvHIPyeIdxk2bFjHv/71L01tba28ra1Ntnv37qCqqqp+eeN7ol27dgWEh4dbhgwZIsm/XEpKSnyKior8xo8f3w4Aa9asiUxPT8+eOXNmYkNDg1zs+oRktVqRmZmZHRUVNXT8+PGteXl5BgDIz89PjIiIGFpeXq5+5plnRNuXvTe0LNPPSkpKfKZOnZompWUZAFixYkX46tWrI3x9fe0ZGRkdKpWKr127tteZkbdz9X/5wAMPxKemppqWLl0quaWKlpYW2dixYzOefvrpmjlz5uirqqoUMTExVsYYnnzyydja2lrl3/72t3Ni1ym0xsZG+ZQpU1L++Mc/Vo4ePboTcDT+uXPnxo8ePdrwxBNPNF16H7GXZWjmTgTx1FNPNRYWFhYfPny4JCQkxJaent4pdk1isFgs2LlzZ8js2bObxa5FaCaTiU2ZMiVl5syZzXPmzNEDgFartSoUCsjlcsyfP7/h6NGj/mLX6Q7h4eG2m266qW3btm0XPzBWKBR44IEHmjdv3hwiZm2uUHMngqiurlYAQFlZmc9XX30V/NBDD0muuV2OLVu2BCYnJ3empKRYxK5FSHa7Hffee29Cenp65wsvvHDxL5KKigpl1+VPP/00OCMjo0OcCoV34cIFRWNjoxwA2tvb2d69ewMzMzM7T548qQIc2+TLL78MTktL88iJzID8QFUs06ZNS/rhhx80Op1OERUVlfvMM89ceOqpp0RfKhLCHXfckaLX6xUKhYKvXLmyMjw83CZ2Te7k6v9yw4YNoTNnzpTcL7bdu3cHbN68OSwtLa2jaxfPpUuXVm/YsCG0qKjIFwDi4uLMH330UYW4lQqnqqpKOXfu3CSbzQbOObvzzjubZ82a1TJ69OjM9vZ2GeecZWVlGdetW+eRY6Y1d0IIcQNacyeEECI4au6EECJB1NwJIUSCqLkTQogEUXMnhBAJouZOCCESRM29H7mKTfV2PcXf1tXVyceOHZuWkJAweOzYsWlSyxzpacwHDhzwHTp0aGZmZmb24MGDs/bu3Sto2JWYenvtvvzyy5FJSUk5qampOY888kicmHUKyVXkb5e5c+dq/fz8hotVX1+oufcjpVKJN9988/zp06cLDx06VLxmzZrII0eOqMWu61oVFBQ0bt26taz7dUuWLImZMGFCW0VFxckJEya0Pf/889Fi1ecOPY154cKFcc8999yFU6dOFS1evPjCokWLtGLVJzRXr91t27Zpvvrqq+CioqKi8vLywsWLF/9H9K23UqvVfP/+/SUlJSVFhYWFRXv27Ancs2ePPwB89913fnq93qMPAvXo4txm82Na1BcJO6uKzDbirnd6DcpyFZs6cuRIQQ5ffrK4UnvK0CnouDL91caVWfFXHH+7c+fO4H379pUAwMMPP9w0fvz4DADVQtYGAJs3b9bW19cLOubIyEjjXXfddcVjZoyhpaVFDgB6vV4eFRVlFrKuLrveXaltrKoQdMzh2gTjpEefvOLI3w8//DD86aefrvH19eUAEBsbaxWyLgC48L/PaU1lZYKOV5WWZhz0ystXFflrtVqxcOHCuM8///xsVlZWsJB1CYlm7iK5NDZVapqamhRdzUCr1VqampokP5F46623qp5//vm46Ojo3MWLF8e9+eabgv8y8wTdX7tnzpxR79u3T5Obm5s5evTojH379klmKQroOfL31Vdfjbz99tv1Xa9vTyX5N1yP+phhu1tLS4tsxowZKa+99lpVV/C/EPqaYYtFJpPBXSc06GuG3Z/eeuutiFdffbVq7ty5+tWrV4fMnTs38cCBA6VCP09vM2x3u/S1a7PZWHNzs/zo0aOn9u3b53f//fenVFVVnZDJhJs39jXDdieFQoFTp04VdUX+fv311wGbN28O+eGHH9xyIhYh0cy9n/UUmypFYWFh1q7EwIqKCmVoaKjgf657mk2bNoXNnj1bDwAFBQW648ePSyr+tqfXbnR0tDk/P18vk8kwceJEo0wm47W1tZKbNHZF/v7973/XVFRUqBMTE4fExsYO6ezslMXHxw8Wu76eUHPvR65iU6Vo0qRJ+vfffz8MAN5///2wyZMnS/YXWZeIiAjLjh07NACwbds2TUJCgkdGwV4NV6/dadOm6ffs2aMBgOPHj6ssFossOjpaEr/Ie4r8HTVqlLGxsfFYdXX1ierq6hNqtdpeWVl5UuxaeyK537CezFVs6qxZs1rEru1a9BR/u3Tp0prp06enJCQkhMfGxpq//PLL02LXKaSexvzuu+9WLFiwQPu73/2OqVQq+3vvveeRUbBXw9Vr9/HHH2+cNWtWYlpaWo5SqbR/8MEHZ4VckhFTT5G/9913n9e8VynylxBC3IAifwkhhAiOmjshhEgQNXdCCJEgau6EECJB1NwJIUSCqLkTQogEUXPvR31FiHqrnuJv165dG5Kampojk8lGfvfdd5LKGwF6HvPBgwebXCEHAAAaiUlEQVR9hw0blpmenp6dl5eX2tzcLJn3l6vI3ylTpiRnZmZmZ2ZmZsfGxg7p2gdeCly9X+++++7ErrFmZmZmHzhwwFfsWnsimRefN+gtQtSb9RR/O2zYsI5NmzaVjxo1SpLBaD2N+de//nXiyy+/fL60tLTojjvu0C1dulQyMceuIn+/+uqrM6dOnSo6depU0e23366bOnWqTuxahdLb+3XZsmXnu8Y9duzYDrFr7cmAPEJ18feLteW6ckFnk6khqcaXxr10VRGiQlm48Zi2tLZN0HGlR2uMy/OHXnH87YgRI/rl0Pui4kVaQ3upoGP2D0g3Zmf9/orHXFFRobrtttvaAWDq1KmtkyZNSl+1atUFIWsDgOaNpVpLrUHQMSuj/Y2h+elXHPnbFVdtt9uxbdu20N27dwseqLXnL8Xa5up2QccbGhtgvGV2lqjvV3ejmXs/6ylCVOyaiDBSU1M7P/7442AAWL9+fWhtba1PX/fxRj3FVe/atSsgPDzcMmTIEJOYtQnN1ft16dKlsenp6dkPPvigtqOjwyM7/oCcufc1w3anSyNEDx06pB49erQgs9y+ZthS1NcMuz+tXbv23Pz587WvvfZazOTJk/VKpdIt2R69zbDdzVVc9fr160PvvvvuZnc8Z18zbHfq6f36hz/8oVqr1VpMJhN74IEHEhYvXhz9xhtv1IhVoys0cxdJV4Totm3bgsSuhQhj+PDhnd9//31ZYWFh8Zw5c5q1Wq2kZrGu4qotFgt27twZMnv2bLc0d0/Q/f2akJBgkclk8PX15QUFBU1HjhzxyM/NqLn3o54iRLOysiQTCzvQVVdXKwDAZrNhyZIlMQ8++GC92DUJpbe46i1btgQmJyd3pqSkePSZia6Uq/dr13kK7HY7vvjii+CsrCz6QHWg8/YIUVd6ir8NCwuzLly4MF6n0ymmT5+elpWVZdy/f39Z34/mHXoac3t7u2zNmjWRAHD77bfrHn/88Sax6xRKb3HVGzZsCJ05c6bkZu2u3q9jxoxJb25uVnDOWXZ2tvEvf/mLR0Y7U+QvIYS4AUX+EkIIERw1d0IIkSBq7oQQIkHU3AkhRIKouRNCiARRcyeEEAmi5t7PrFYrsrKysidOnJgqdi1C6Sn+9uGHH45LSkrKSU9Pz7711ltTug4GkQpXEbh1dXXysWPHpiUkJAweO3ZsWkNDgyTG7Wq8Bw4c8B06dGhmZmZm9uDBg7P27t0rmXhnV5G/drsdv/3tb2MTExMHJycn5yxbtixS7Fp7Qs29ny1btiwqNTXVI49ou1o9xd9OmjSptbS0tLC0tLQoNTW1c/HixZKJvwVcR+AuWbIkZsKECW0VFRUnJ0yY0Pb8889LYtyuxrtw4cK455577sKpU6eKFi9efGHRokVasWsViqvI37fffjvs/PnzytOnT588c+ZM4bx58zzyAK4BeYTqhf99TmsqKxN0hqFKSzMOeuXlXgOOTp8+rdy1a1fQs88+W7NixYooIZ8fALD5MS3qi4SdOUVmG3HXO1ccfztjxozWrss33HCDYePGjSGC1uX0ZHGl9pShU9AxZ/qrjSuz4nsds6sI3J07dwbv27evBAAefvjhpvHjx2cAqBayvs2bN2vr6+sFHXNkZKTxrrvuuuLIX8YYWlpa5ACg1+vlUVFRZiHrAoBd767UNlZVCDrecG2CcdKjT15V5O/q1asjN2zYcEYud/xRFhsbaxWyNqEMyOYulscee0z7+uuvn+96MwwU69atC8/Pz/fI2Y0QukfgNjU1KbqaoFartTQ1NUnuPdZ9vAkJCeYpU6akLV68WGu327F///5TYtcnJKvVisGDB2dXVlaq5syZU5+Xl2eoqqpS/fWvfw356quvQkJDQ63vvPNOpSdGHUvuhXc5+pphu8OGDRuCwsPDrTfddJNx+/btGrc8SR8zbDEsWrQoWi6X80ceecQtzb2vGba7uYrABRwzP3ec3KG3Gba7XTreBQsWRLz66qtVc+fO1a9evTpk7ty5iQcOHCgV8jn7mmG7U0+Rv2azmanVan7y5MniP//5z8Fz585NPHLkiOAnKblWtObeT/bv3x+we/fu4NjY2CFz585N/uGHHzR33nlnkth1udNbb70VtmvXruAvvvjirEwmvZdaTxG4YWFh1q7UwIqKCmVoaKhH/sl+NXoa76ZNm8Jmz56tB4CCggLd8ePHPTL+9lp1j/yNiooy33fffToA+NWvfqUvLS2lc6gOZO+88051XV3d8erq6hPr1q07M2bMmLYtW7acFbsud9m4cWPgqlWronfs2FGu0Wjsfd/Du7iKwJ00aZL+/fffDwOA999/P2zy5Ml614/iPVyNNyIiwrJjxw4NAGzbtk2TkJAgmQhrV5G/t912m37nzp0aANixY4cmISHB45ZkgAG6LEOE1VP87YoVK6LNZrMsLy8vHQBGjBjR/sknn1SKXatQXEXgLl26tGb69OkpCQkJ4bGxseYvv/zytNi1CsHVeN99992KBQsWaH/3u98xlUplf++99zwy/vZquIr8vfXWW9vz8/OT/vSnP0X5+fnZP/zww3Ni19oTivwlhBA3oMhfQgghgqPmTgghEkTNnRBCJIiaOyGESBA1d0IIkSBq7oQQIkHU3PtZbGzskPT09OyuiFSx6xFCT5G/TzzxxKCucY4bNy7t3LlzSjFrFJqrCNy1a9eGpKam5shkspHfffedZOJvXY334MGDvsOGDctMT0/PzsvLS21ubpZMT3EV+Tty5MiMzMzM7MzMzOzIyMjcX/ziFyli19oT2s+9n8XGxg45fPhwcUxMjGQOS//6668DNBqNfd68eUllZWWFANDc3CzrylpZtmxZZFFRkVpKBzFVVFQoq6qqlDfeeKNRp9PJhg8fnr1p06Zyxhjkcjn/9a9/nfjGG29U3XzzzUaxaxWCq/HOmTMn6fe//33VlClT2leuXBl29uxZ1apVqy6IXa8Q7HY72traZEFBQXaTycRGjx6dsWLFiqpbbrnF0HWbSZMmpUybNk0/f/78pkvvL/Z+7gPyCNU9fynWNle3CzqrCo0NMN4yO0vUEKvF3y/WluvKBR1Xakiq8aVxL11x5G/3EC2DwSBzR4AWACzceExbWtsm6JjTozXG5flDryryd/r06a293U8IRcWLtIb2UkHH7B+QbszO+v0VR/5WVFSobrvttnYAmDp1auukSZPShW7uzRtLtZZag6DjVUb7G0Pz068q8vdiXc3NsoMHD2o2bNjgkTEikvkTypvccsstaTk5OVlvvPFGuNi1uNNvf/vb2Ojo6NyNGzeGLV++XBKzuZ50j8AVu5b+0H28qampnR9//HEwAKxfvz60trbWp6/7exOr1YrMzMzsqKiooePHj2/Ny8u7OGv/5JNPQsaOHdt6aRqopxiQM3cxZ9j79+8/lZSUZKmurlbk5eWl5+TkdHbNfK5VXzPs/vb2229Xv/3229XPPvts9PLlyyNXrFgheIPva4btbr1F/rpLbzNsd7t0vGvXrj03f/587WuvvRYzefJkvVKpFHydt68Ztjv1FPk7evToTgD4/PPPQwsKChrEqq0vNHPvZ0lJSRbAcfaWKVOm6A8ePCjJiNTuCgoKmrdv3+6WMzGJqacIXCnrabzDhw/v/P7778sKCwuL58yZ06zVaj0yIfFadY/8BYCamhrF8ePH/e+5554WsWtzhZp7P2ptbZXpdDpZ1+W9e/cG5ubmSup8ql1OnDih6rr8+eefB6ekpEhqnK4icKXK1Xirq6sVAGCz2bBkyZKYBx98sF68KoXlKvIXAP7617+G5OXl6f38/Dx2j5QBuSwjlvPnzyumT5+eCgA2m43dfffdTfn5+W7/AM7deor83blzZ9CZM2fUjDEeFxdnXrNmjWSiYAHXEbgmk4ktXLgwXqfTKaZPn56WlZVl3L9/f1lfj+fpXI23tLRUtWbNmkgAuP3223WPP/74f+w14q1cRf4CwMaNG0OffvrpGrFr7A3tCkkIIW4g9q6QtCxDCCESRM2dEEIkiJo7IYRIEDV3QgiRIGruhBAiQdTcCSFEgqi597PGxkb55MmTk5OSknKSk5Nz/v73v3v9Eao9Rf52WbJkSRRjbGRNTY2kjqlwFYH78MMPxyUlJeWkp6dn33rrrSldB8F4O1fxt6dOnfLJzc3NjI+PHzxlypTkzs5O9yTEicDVmLds2aLJzs7OyszMzB45cmTGyZMnVX09lhioufez3/zmN9pf/vKXrWfPni0sKioqGjZsWKfYNV2rgoKCxq1bt/7HgTrl5eXKPXv2BMbExJjFqMudlEol3nzzzfOnT58uPHToUPGaNWsijxw5op40aVJraWlpYWlpaVFqamrn4sWLo8WuVQhqtZrv37+/pKSkpKiwsLBoz549gXv27PFfsGBB3Pz58+sqKytPBgUFWVetWiWZMDxXY37iiScS1q9ff/bUqVNFM2fObF6yZEmM2LX2RFKzqcu1692V2saqCkEjRMO1CcZJjz7Za8BRU1OT/P/+7/80GzduPAc4XjxqtdomVA0X/vc5ramsTNBxqdLSjINeefmKI38BYP78+drly5efz8/PTxWypn+z+TEt6ouEPSlGZLYRd71zVZG/M2bMuHjE8Q033GDYuHGj4Jk6TxZXak8ZOgUdc6a/2rgyK97lmF3F3x48eFCzZcuWMwBQUFDQ9MILLwxatGiRoGFamzdv1tbX1ws63sjISONdd9111ZG/er1eDgAtLS3ymJgYi5C1CWVANnexlJSU+ISGhlpnzpyZWFRU5Jebm2v48MMPqwIDAz0yMvRarF+/PjgmJsZyww03SCpTpieuIn/XrVsXnp+f3yxWXUKzWq0YPHhwdmVlpWrOnDn1WVlZJo1GY1MqHSfZSkxMNNfV1Uku8rf7mPPy8gzvvffeuRkzZqSpVCp7QECA7dChQ8Vi19mTAdnc+5phu4vVamXFxcV+q1atqszLyzPMmzdPu3jx4mihTm7Q1wy7v7S1tclef/316L1797o/U6WPGba7uYr8XbRoUbRcLuePPPKI4M29txm2O10af3v8+HF1fzxvXzNsd+op8vcPf/hD1BdffFGWl5dnWLx4cdSjjz6q/eyzzzwuO4nW3PtRYmKiOSoqytwV+D9r1izdsWPHJHOezS7FxcWq8+fPq3Jzc7NjY2OH1NXV+YwYMSKrsrJSUpMJV5G/b731VtiuXbuCv/jii7MymfTeYl3xt/v37/dva2uTWyyOVYlz5875REVFSe7zFeDnMW/dujWouLjYt+s9PHv2bN3hw4cDxK6vJ9J75Xmw+Ph4a3R0tPnYsWMqAPjmm28CMzIyvP4D1Utdd911Hc3Nzceqq6tPVFdXn4iKijL/+OOPxfHx8ZI5b6yrCNyNGzcGrlq1KnrHjh3lGo1GMsttPcXfZmdnd44ZM6bto48+CgGAtWvXhk2dOlUyufauxtze3i4/fvy4CgC2b98emJqa6pHvYUnNpLzB22+/XfnAAw8km81mFh8fb9qwYcM5sWu6Vj1F/j711FOSTuB0FYG7cOFCrdlsluXl5aUDwIgRI9qlcGJwV/G3Q4cO7Zg1a1bKsmXLYnNycoxPPPGEZP7fXY3ZYrFU5OfnpzDGEBQUZFu3bp1HnkOVIn8JIcQNKPKXEEKI4Ki5E0KIBFFzJ4QQCaLmTgghEkTNnRBCJIiaOyGESBA193507NgxVWZmZnbXV0BAwPAXX3wxUuy6rlVPkb8LFiwYFBkZmds11s8++yxIzBqF5iry94knnhiUnp6enZmZmT1u3Li0c+fOKcWuVQiu4m9feeWViPj4+MFSjHV2NeatW7dqsrOzs9LS0nJmzJiR2HWErqeh/dxFYrVaER0dPfTAgQPF6enpXn3I9tdffx2g0Wjs8+bNSyorKysEHM09ICDA9uKLL9b1dX9vVFFRoayqqlLeeOONRp1OJxs+fHj2pk2bypOSksxdGTPLli2LLCoqUkvhICa73Y62tjZZUFCQ3WQysdGjR2esWLGiSq1W28PDw215eXkZhw8fLo6JiZHUUciXjvnNN9+s+tWvfpXyzTfflOTm5pqefPLJQQkJCeaeDtoTez93Sf2mvVzNG0u1llqDoJkuymh/Y2h++mUHHG3dujUwPj7eJGRj3/OXYm1zdbug4wqNDTDeMjvrqiJ/+8Pi7xdry3Xlgo45NSTV+NK4l64q8nfkyJEXD0U3GAyyrohYIS3ceExbWtsm6JjTozXG5flDrzjyd9y4cW5P/SwqXqQ1tJcKOl7/gHRjdtbvrzjyVy6XQ6lU2nNzc00AMHny5NZXX3012hOPyKZlGZFs2LAhND8/v0nsOtxpzZo1kenp6dkzZ85MbGhokMQZiXpyaeTvb3/729jo6OjcjRs3hi1fvlyQxE9PYLVakZmZmR0VFTV0/PjxrV3hWVJ26ZgnTJhgsNls7LvvvvMDgM8++yykpqbGI2OOaVlGBJ2dnSwmJib3+PHjhVqtVhJ/xpaUlPhMnTo1rWtZpqqqShETE2NljOHJJ5+Mra2tVf7tb387J3KZgmtpaZGNHTs24+mnn67pngwJAM8++2x0Z2enbMWKFZJp8IDjVJFTpkxJ+eMf/1g5evToTgCIjY0dIrVlme66j7mlpUW+aNGiOLPZLJs4cWLLN998E3zq1KmiS+8j9rIMzdxFsHHjxqDs7GyjVBp7T7RarVWhUEAul2P+/PkNR48e9fpzxV7KVeRvl4KCgubt27cLfiYmsXXF327btk1SH5L3pvuYf/GLXxiOHDlScuLEieIJEya0Jycne2QqJDV3EXz66aeh99xzj2TO0NOTioqKi3uJfPrpp8EZGRmSOiOTq8jfEydOXDxZ8ueffx6ckpIiiXH3FH+blZXlkU1NKK7GXF1drQCAjo4Otnz58uhHHnlE0NMKCmVAfqAqptbWVtn+/fsD//znP3vcmVuuVk+Rv/v27dMUFRX5AkBcXJz5o48+ksx4AdeRv2vXrg0/c+aMmjHG4+LizGvWrJHEuF3F3y5btizy7bffjm5qalIOHTo0e+LEiS2eeFaiq+FqzA8//HDc7t27g+x2OysoKKi/44472sSutSe05k4IIW5Aa+6EEEIER82dEEIkiJo7IYRIEDV3QgiRIGruhBAiQdTcCSFEgqi596OlS5dGpqam5qSlpeVMmzYtyWg0Cp8qJYKeIn8B4OWXX45MSkrKSU1NzXnkkUfixKrPHVxF/nZZsmRJlJRicF3F395xxx1JiYmJg9PS0nJmzpyZaDKZJPGa7s5qtSIrKyt74sSJqQBw6tQpn9zc3Mz4+PjBU6ZMSe7s7PTIMVNz7ydnz55VfvDBB1FHjx4tKisrK7TZbGz16tWhYtclhIKCgsatW7eWdb9u27Ztmq+++iq4qKioqLy8vHDx4sW1YtXnDkqlEm+++eb506dPFx46dKh4zZo1kUeOHFEDjsa/Z8+ewJiYGK+Ocu5OrVbz/fv3l5SUlBQVFhYW7dmzJ3DPnj3+DzzwQPOZM2dOlpSUFHZ2drKVK1eGi12r0JYtWxaVmpp68UjjBQsWxM2fP7+usrLyZFBQkHXVqlUeOWZJzCqu1ObNm7X19fWCRohGRkYa77rrrl4jRG02GzMYDDKVSmXr6OiQxcXFCZryv+vdldrGqgpBxxWuTTBOevTJK478fffddyOefvrpGl9fXw4AsbGxbsnRufC/z2lNZWWCjlmVlmYc9MrLVx35O3/+fO3y5cvP5+fnpwpZ10WbH9OivkjQMSMy24i73rniyN9Zs2a1dN1m1KhRhvPnzwuekPhkcaX2lKFT0PFm+quNK7Pi+4zoPn36tHLXrl1Bzz77bM2KFSui7HY7Dh48qNmyZcsZACgoKGh64YUXBi1atMjjIgho5t5PkpKSLI899lhtUlJSbmRk5FCNRmObMWNGq9h1ucuZM2fU+/bt0+Tm5maOHj06Y9++fcI2Iw/SPfJ3/fr1wTExMZYbbrhBEpky3fUW+Wsymdhnn30WNmXKlJbeHsPbPPbYY9rXX3/9vEzmaJV1dXUKjUZjUyod0UmJiYnmuro6j4z8HZAz975m2O7Q0NAg/+qrr4LLy8tPhIWF2aZMmZL8pz/9KfS///u/BQsQ62uG3Z9sNhtrbm6WHz169NS+ffv87r///pSqqqoTXW8SofQ1w3a3lpYW2YwZM1Jee+21KqVSiddffz167969ZX3f8xr0MsN2J4VCgVOnThV1xd8eOnRI3RX5O2fOnPgxY8a0T548uV3o572cGbY7bNiwISg8PNx60003Gbdv364Ro4ZrQTP3frJt27bA+Ph406BBg6wqlYrfdddd+gMHDgSIXZe7REdHm/Pz8/UymQwTJ040ymQyXltbK6nJxKWRv8XFxarz58+rcnNzs2NjY4fU1dX5jBgxIquyslJS47408vd3v/tdTGNjo+LDDz/0mMmFEPbv3x+we/fu4NjY2CFz585N/uGHHzQPP/ywtq2tTd513tRz5875REVFeeRnK9Tc+0liYqL5xx9/DGhra5PZ7Xb84x//0Eg5MnXatGn6PXv2aADg+PHjKovFIouOjpZMfn1Pkb/XXXddR3Nz87Hq6uoT1dXVJ6Kiosw//vhjcXx8vNeP21X87R/+8Ifwf/zjH0GbN28+I5dL62Rb77zzTnVdXd3x6urqE+vWrTszZsyYtq1bt54dM2ZM20cffRQCAGvXrg2bOnXqf2T5ewJJzSg8WV5enmHatGm63NzcLIVCgZycHOOCBQs87kOYq9FT5O/jjz/eOGvWrMS0tLQcpVJp/+CDD84KvSQjJleRv90/YJQSV/G3CoViZExMjGnUqFFZADB16lTdG2+8USN2ve705ptvnp81a1bKsmXLYnNycoxPPPGER6bNUuQvIYS4AUX+EkIIERw1d0IIkaCB1NztdrvdIw8TJoRIi7PX2MWsYSA195MNDQ1B1OAJIe5kt9tZQ0NDEICTYtYxYPaWsVqtD9XW1q6ura0djIH1S40Q0r/sAE5ardaHxCxiwOwtQwghAwnNYAkhRIKouRNCiARRcyeEEAmi5k4IIRJEzZ0QQiTo/wOFe/2qLSTgHAAAAABJRU5ErkJggg==",
"text/plain": [
"